skip to main content
research-article

3D imaging spectroscopy for measuring hyperspectral patterns on solid objects

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Sophisticated methods for true spectral rendering have been developed in computer graphics to produce highly accurate images. In addition to traditional applications in visualizing appearance, such methods have potential applications in many areas of scientific study. In particular, we are motivated by the application of studying avian vision and appearance. An obstacle to using graphics in this application is the lack of reliable input data. We introduce an end-to-end measurement system for capturing spectral data on 3D objects. We present the modification of a recently developed hyperspectral imager to make it suitable for acquiring such data in a wide spectral range at high spectral and spatial resolution. We capture four megapixel images, with data at each pixel from the near-ultraviolet (359 nm) to near-infrared (1,003 nm) at 12 nm spectral resolution. We fully characterize the imaging system, and document its accuracy. This imager is integrated into a 3D scanning system to enable the measurement of the diffuse spectral reflectance and fluorescence of specimens. We demonstrate the use of this measurement system in the study of the interplay between the visual capabilities and appearance of birds. We show further the use of the system in gaining insight into artifacts from geology and cultural heritage.

Skip Supplemental Material Section

Supplemental Material

tp126_12.mp4

References

  1. 3DCoForm, 2012. MeshLab. http://meshlab.sourceforge.net/.Google ScholarGoogle Scholar
  2. Andersson, S., ornborg, J., and Andersson, M. 1998. Ultraviolet sexual dimorphism and assortative mating in blue tits. In Proc. R. Soc. Lond., vol. 265, 445--450.Google ScholarGoogle ScholarCross RefCross Ref
  3. Arnold, K. E., Owens, I. P. F., and Marshall, N. J. 2002. Fluorescent signaling in parrots. Science 295, 5552, 92.Google ScholarGoogle ScholarCross RefCross Ref
  4. Attas, M., Cloutis, E., Collins, C., Goltz, D., Majzels, C., Mansfield, J., and Mantsch, H. 2003. Near-infrared spectroscopic imaging in art conservation: investigation of drawing constituents. J. Cultural Heritage 4, 2, 127--136.Google ScholarGoogle ScholarCross RefCross Ref
  5. Battle, D. R. 1997. The measurement of colour. In Colour Physics for Industry, R. McDonald, Ed., 2nd ed. Soc. Dyers Col., Bradford, 57--80.Google ScholarGoogle Scholar
  6. Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., and Maier, E. J. 1996. Ultraviolet vision and mate choice in zebra finches. Nature 380, 433--435.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bernardini, F., and Rushmeier, H. 2002. The 3D model acquisition pipeline. Comput. Graph. Forum 21, 2, 149--149.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bernardini, F., Martin, I. M., and Rushmeier, H. E. 2001. High-quality texture reconstruction from multiple scans. IEEE Trans. Vis. Comput. Graph. 7, 4, 318--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bioucas-Dias, J., and Figueiredo, M. 2007. A new twist: two-step iterative shrinkage/thresholding for image restoration. IEEE Trans. Image Processing 16, 12, 2992--3004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Brady, D. J. 2008. Optical Imaging and Spectroscopy. Wiley-interscience, New Jersey.Google ScholarGoogle Scholar
  11. Brusco, N., Capeleto, S., Fedel, M., Paviotti, A., Poletto, L., Cortelazzo, G. M., and Tondello, G. 2006. A system for 3D modeling frescoed historical buildings with multispectral texture information. Machine Vision and Appl. 17, 6, 373--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Burns, P. D. 2002. Slanted-edge MTF for digital camera and scanner analysis. In Proc. PICS Conf., IS&T, 135--138.Google ScholarGoogle Scholar
  13. Chambolle, A. 2004. An algorithm for total variation minimization and applications. J. Mathematical Imaging and Vision 20, 1--2, 89--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Chen, D. M., and Goldsmith, T. H. 1986. Four spectral classes of cone in the retinas of birds. J. Comparative Physiology A 159, 4, 473--479.Google ScholarGoogle ScholarCross RefCross Ref
  15. Chen, D. M., Collins, J. S., and Goldsmith, T. H. 1984. The ultraviolet receptor of bird retinas. Science 225, 4659, 337--340.Google ScholarGoogle Scholar
  16. CIE. 2001. Improvement to industrial colour difference equation. CIE Pub. 142, Commission Internationale de l'Eclairage, Vienna.Google ScholarGoogle Scholar
  17. Devlin, K., Chalmers, A., Wilkie, A., and Purgathofer, W. 2002. Tone reproduction and physically based spectral rendering. Eurographics 2002: State of the Art Reports, 101--123.Google ScholarGoogle Scholar
  18. Du, H., Tong, X., Cao, X., and Lin, S. 2009. A prism-based system for multispectral video acquisition. In Proc. Int. Conf. Comput. Vision (ICCV), IEEE, 175--182.Google ScholarGoogle Scholar
  19. Elgazzar, S., Liscano, R., Blais, F., and Miles, A. 1997. 3-D data acquisition for indoor environment modeling using a compact active range sensor. In Proc. the IEEE Instrumentation, Measurement and Technology Conference, 1--8.Google ScholarGoogle Scholar
  20. Farouk, M., Rifai, I. E., Tayar, S. E., Shishiny, H. E., Hosny, M., Rayes, M. E., Gomes, J., Giordano, F., Rushmeier, H. E., Bernardini, F., and Magerlein, K. 2003. Scanning and processing 3D objects for web display. In Proc. Int. Conf. 3D Digital Imaging and Modeling (3DIM), 310--317.Google ScholarGoogle Scholar
  21. Figueiredo, M., Nowak, R., and Wright, S. 2007. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Selected Topics in Signal Processing 1, 4, 586--597.Google ScholarGoogle ScholarCross RefCross Ref
  22. Fischer, C., and Kakoulli, I. 2006. Multispectral and hyper-spectral imaging technologies in conservation: current research and potential applications. Reviews in Conservation 7, 3--16.Google ScholarGoogle Scholar
  23. Habel, R., Kudenov, M., and Wimmer, M. 2012. Practical spectral photography. Comput. Graph. Forum 31, 2, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hart, N. S. 2001. The visual ecology of avian photoreceptors. Progress in Retinal and Eye Research 20, 5, 675--703.Google ScholarGoogle ScholarCross RefCross Ref
  25. Holroyd, M., Lawrence, J., and Zickler, T. 2010. A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. ACM Trans. Graph. (Proc. SIGGRAPH 2010) 29, 3, 99:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. ISO. 2000. Photography -- electronic still-picture cameras -- resolution measurements. Tech. Rep. ISO 12233:2000, International Organization for Standardization (ISO).Google ScholarGoogle Scholar
  27. Kawakami, R., Wright, J., Tai, Y.-W., Matsushita, Y., Ben-Ezra, M., and Ikeuchi, K. 2011. High-resolution hyperspectral imaging via matrix factorization. In Proc. IEEE Conf. Comput. Vision and Pattern Recognition, 2329--2336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kittle, D., Choi, K., Wagadarikar, A., and Brady, D. J. 2010. Multiframe image estimation for coded aperture snapshot spectral imagers. Appl. Opt. 49, 36, 6824--6833.Google ScholarGoogle ScholarCross RefCross Ref
  29. Labshpere, 2011. Spectralon diffuse reflectance standards. http://www.labsphere.com/uploads/datasheets/diffuse-reflectance-standards-product-sheet.pdf.Google ScholarGoogle Scholar
  30. Land, M. F., and Nilsson, D.-E., Eds. 2002. Animal Eyes. Oxford University Press, Oxford.Google ScholarGoogle Scholar
  31. Lensch, H., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. (Proc. SIGGRAPH 2003) 22, 2, 234--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S. E., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. 2000. The digital Michelangelo project: 3D scanning of large statues. In Proc. SIGGRAPH 2000, 131--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mansouri, A., Lathuiliere, A., Marzani, F. S., Voisin, Y., and Gouton, P. 2007. Toward a 3D multispectral scanner: An application to multimedia. IEEE Multimedia 14, 1, 40--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Mcgraw, K. J. 2006. Mechanics of uncommon colors in birds: pterins, porphyrins, and psittacofulvins. In Bird coloration, Vol. I, Mechanisms and measurements, G. E. Hill and K. J. Mcgraw, Eds. Harvard University Press, Cambridge, Massachusetts.Google ScholarGoogle Scholar
  35. Newsome, D., and Modreski, P. 1981. The colors and spectral distributions of fluorescent minerals. J. the Fluorescent Mineral Society 10, 7--56.Google ScholarGoogle Scholar
  36. Next-Limit-Technologies, 2012. Maxwell Render. http://www.maxwellrender.com/.Google ScholarGoogle Scholar
  37. nVidia, 2012. About iRay, physically correct GPU rendering technology. http://www.mentalimages.com/products/iray/about-iray.html.Google ScholarGoogle Scholar
  38. Qin, J. 2010. Hyperspectral imaging instruments. In Hyperspectral Imaging for Food Quality Analysis and Control, D.-W. Sun, Ed. Elsevier, 129--175.Google ScholarGoogle Scholar
  39. Rapantzikos, K., and Balas, C. 2005. Hyperspectral imaging: potential in non-destructive analysis of palimpsests. In Proc. Int. Conf. Image Processing (ICIP), vol. 2, 618--621.Google ScholarGoogle Scholar
  40. Saunders, D., and Cupitt, J. 1993. Image processing at the National Gallery: The VASARI project. National Gallery Tech. Bull. 14, 72--86.Google ScholarGoogle Scholar
  41. Stoddard, M. C., and Prum, R. O. 2008. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings. The American Naturalist 171, 6, 755--776.Google ScholarGoogle ScholarCross RefCross Ref
  42. Stoddard, M. C., and Prum, R. O. 2011. How colorful are birds? Evolution of the avian plumage color gamut. Behavioral Ecology 22, 5, 1042--1052.Google ScholarGoogle ScholarCross RefCross Ref
  43. Sugiura, H., Kuno, T., Watanabe, N., Matoba, N., Hayashi, J., and Miyata, Y. 2000. Development of a multi-spectral camera system. In Proc. SPIE 3965, 331--339.Google ScholarGoogle Scholar
  44. Sun, X., and Pitsianis, N. 2008. Solving non-negative linear inverse problems with the NeAREst method. Proc. SPIE 7074, 707402.Google ScholarGoogle Scholar
  45. Thoury, M., Elias, M., Frigerio, J. M., and Barthou, C. 2005. Non-destructive identification of varnishes by UV fluorescence spectroscopy. In Proc. SPIE 5857, 1--11.Google ScholarGoogle Scholar
  46. Vos, J. J. 1978. Colorimetric and photometric properties of a 2-deg fundamental observer. Color Res. Appl. 3, 125--128.Google ScholarGoogle ScholarCross RefCross Ref
  47. Wagadarikar, A., John, R., Willett, R., and Brady, D. J. 2008. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47, 10, B44--B51.Google ScholarGoogle ScholarCross RefCross Ref
  48. Wagadarikar, A. A., Pitsianis, N. P., Sun, X., and Brady, D. J. 2009. Video rate spectral imaging using a coded aperture snapshot spectral imager. Opt. Express 17, 8, 6368--6388.Google ScholarGoogle ScholarCross RefCross Ref
  49. Ware, G., Chabries, D., Christiansen, R., Brady, J., and Martin, C. 2000. Multispectral analysis of ancient Maya pigments: implications for the Naj Tunich Corpus. In Proc. IEEE Geoscience and Remote Sensing Symposium, vol. 6, 2489--2491.Google ScholarGoogle Scholar
  50. Wright, S., Nowak, R., and Figueiredo, M. 2009. Sparse reconstruction by separable approximation. IEEE Trans. Signal Processing 57, 7, 2479--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhao, Y., Berns, R. S., Taplin, L. A., and Coddington, J. 2008. An investigation of multispectral imaging for the mapping of pigments in paintings. In Proc. SPIE 6810, 1--9.Google ScholarGoogle Scholar

Index Terms

  1. 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader