Abstract
Sophisticated methods for true spectral rendering have been developed in computer graphics to produce highly accurate images. In addition to traditional applications in visualizing appearance, such methods have potential applications in many areas of scientific study. In particular, we are motivated by the application of studying avian vision and appearance. An obstacle to using graphics in this application is the lack of reliable input data. We introduce an end-to-end measurement system for capturing spectral data on 3D objects. We present the modification of a recently developed hyperspectral imager to make it suitable for acquiring such data in a wide spectral range at high spectral and spatial resolution. We capture four megapixel images, with data at each pixel from the near-ultraviolet (359 nm) to near-infrared (1,003 nm) at 12 nm spectral resolution. We fully characterize the imaging system, and document its accuracy. This imager is integrated into a 3D scanning system to enable the measurement of the diffuse spectral reflectance and fluorescence of specimens. We demonstrate the use of this measurement system in the study of the interplay between the visual capabilities and appearance of birds. We show further the use of the system in gaining insight into artifacts from geology and cultural heritage.
Supplemental Material
Available for Download
Supplemental material.
- 3DCoForm, 2012. MeshLab. http://meshlab.sourceforge.net/.Google Scholar
- Andersson, S., ornborg, J., and Andersson, M. 1998. Ultraviolet sexual dimorphism and assortative mating in blue tits. In Proc. R. Soc. Lond., vol. 265, 445--450.Google Scholar
Cross Ref
- Arnold, K. E., Owens, I. P. F., and Marshall, N. J. 2002. Fluorescent signaling in parrots. Science 295, 5552, 92.Google Scholar
Cross Ref
- Attas, M., Cloutis, E., Collins, C., Goltz, D., Majzels, C., Mansfield, J., and Mantsch, H. 2003. Near-infrared spectroscopic imaging in art conservation: investigation of drawing constituents. J. Cultural Heritage 4, 2, 127--136.Google Scholar
Cross Ref
- Battle, D. R. 1997. The measurement of colour. In Colour Physics for Industry, R. McDonald, Ed., 2nd ed. Soc. Dyers Col., Bradford, 57--80.Google Scholar
- Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., and Maier, E. J. 1996. Ultraviolet vision and mate choice in zebra finches. Nature 380, 433--435.Google Scholar
Cross Ref
- Bernardini, F., and Rushmeier, H. 2002. The 3D model acquisition pipeline. Comput. Graph. Forum 21, 2, 149--149.Google Scholar
Cross Ref
- Bernardini, F., Martin, I. M., and Rushmeier, H. E. 2001. High-quality texture reconstruction from multiple scans. IEEE Trans. Vis. Comput. Graph. 7, 4, 318--332. Google Scholar
Digital Library
- Bioucas-Dias, J., and Figueiredo, M. 2007. A new twist: two-step iterative shrinkage/thresholding for image restoration. IEEE Trans. Image Processing 16, 12, 2992--3004. Google Scholar
Digital Library
- Brady, D. J. 2008. Optical Imaging and Spectroscopy. Wiley-interscience, New Jersey.Google Scholar
- Brusco, N., Capeleto, S., Fedel, M., Paviotti, A., Poletto, L., Cortelazzo, G. M., and Tondello, G. 2006. A system for 3D modeling frescoed historical buildings with multispectral texture information. Machine Vision and Appl. 17, 6, 373--393. Google Scholar
Digital Library
- Burns, P. D. 2002. Slanted-edge MTF for digital camera and scanner analysis. In Proc. PICS Conf., IS&T, 135--138.Google Scholar
- Chambolle, A. 2004. An algorithm for total variation minimization and applications. J. Mathematical Imaging and Vision 20, 1--2, 89--97. Google Scholar
Digital Library
- Chen, D. M., and Goldsmith, T. H. 1986. Four spectral classes of cone in the retinas of birds. J. Comparative Physiology A 159, 4, 473--479.Google Scholar
Cross Ref
- Chen, D. M., Collins, J. S., and Goldsmith, T. H. 1984. The ultraviolet receptor of bird retinas. Science 225, 4659, 337--340.Google Scholar
- CIE. 2001. Improvement to industrial colour difference equation. CIE Pub. 142, Commission Internationale de l'Eclairage, Vienna.Google Scholar
- Devlin, K., Chalmers, A., Wilkie, A., and Purgathofer, W. 2002. Tone reproduction and physically based spectral rendering. Eurographics 2002: State of the Art Reports, 101--123.Google Scholar
- Du, H., Tong, X., Cao, X., and Lin, S. 2009. A prism-based system for multispectral video acquisition. In Proc. Int. Conf. Comput. Vision (ICCV), IEEE, 175--182.Google Scholar
- Elgazzar, S., Liscano, R., Blais, F., and Miles, A. 1997. 3-D data acquisition for indoor environment modeling using a compact active range sensor. In Proc. the IEEE Instrumentation, Measurement and Technology Conference, 1--8.Google Scholar
- Farouk, M., Rifai, I. E., Tayar, S. E., Shishiny, H. E., Hosny, M., Rayes, M. E., Gomes, J., Giordano, F., Rushmeier, H. E., Bernardini, F., and Magerlein, K. 2003. Scanning and processing 3D objects for web display. In Proc. Int. Conf. 3D Digital Imaging and Modeling (3DIM), 310--317.Google Scholar
- Figueiredo, M., Nowak, R., and Wright, S. 2007. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Selected Topics in Signal Processing 1, 4, 586--597.Google Scholar
Cross Ref
- Fischer, C., and Kakoulli, I. 2006. Multispectral and hyper-spectral imaging technologies in conservation: current research and potential applications. Reviews in Conservation 7, 3--16.Google Scholar
- Habel, R., Kudenov, M., and Wimmer, M. 2012. Practical spectral photography. Comput. Graph. Forum 31, 2, 1--10. Google Scholar
Digital Library
- Hart, N. S. 2001. The visual ecology of avian photoreceptors. Progress in Retinal and Eye Research 20, 5, 675--703.Google Scholar
Cross Ref
- Holroyd, M., Lawrence, J., and Zickler, T. 2010. A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. ACM Trans. Graph. (Proc. SIGGRAPH 2010) 29, 3, 99:1--12. Google Scholar
Digital Library
- ISO. 2000. Photography -- electronic still-picture cameras -- resolution measurements. Tech. Rep. ISO 12233:2000, International Organization for Standardization (ISO).Google Scholar
- Kawakami, R., Wright, J., Tai, Y.-W., Matsushita, Y., Ben-Ezra, M., and Ikeuchi, K. 2011. High-resolution hyperspectral imaging via matrix factorization. In Proc. IEEE Conf. Comput. Vision and Pattern Recognition, 2329--2336. Google Scholar
Digital Library
- Kittle, D., Choi, K., Wagadarikar, A., and Brady, D. J. 2010. Multiframe image estimation for coded aperture snapshot spectral imagers. Appl. Opt. 49, 36, 6824--6833.Google Scholar
Cross Ref
- Labshpere, 2011. Spectralon diffuse reflectance standards. http://www.labsphere.com/uploads/datasheets/diffuse-reflectance-standards-product-sheet.pdf.Google Scholar
- Land, M. F., and Nilsson, D.-E., Eds. 2002. Animal Eyes. Oxford University Press, Oxford.Google Scholar
- Lensch, H., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. (Proc. SIGGRAPH 2003) 22, 2, 234--257. Google Scholar
Digital Library
- Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S. E., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. 2000. The digital Michelangelo project: 3D scanning of large statues. In Proc. SIGGRAPH 2000, 131--144. Google Scholar
Digital Library
- Mansouri, A., Lathuiliere, A., Marzani, F. S., Voisin, Y., and Gouton, P. 2007. Toward a 3D multispectral scanner: An application to multimedia. IEEE Multimedia 14, 1, 40--47. Google Scholar
Digital Library
- Mcgraw, K. J. 2006. Mechanics of uncommon colors in birds: pterins, porphyrins, and psittacofulvins. In Bird coloration, Vol. I, Mechanisms and measurements, G. E. Hill and K. J. Mcgraw, Eds. Harvard University Press, Cambridge, Massachusetts.Google Scholar
- Newsome, D., and Modreski, P. 1981. The colors and spectral distributions of fluorescent minerals. J. the Fluorescent Mineral Society 10, 7--56.Google Scholar
- Next-Limit-Technologies, 2012. Maxwell Render. http://www.maxwellrender.com/.Google Scholar
- nVidia, 2012. About iRay, physically correct GPU rendering technology. http://www.mentalimages.com/products/iray/about-iray.html.Google Scholar
- Qin, J. 2010. Hyperspectral imaging instruments. In Hyperspectral Imaging for Food Quality Analysis and Control, D.-W. Sun, Ed. Elsevier, 129--175.Google Scholar
- Rapantzikos, K., and Balas, C. 2005. Hyperspectral imaging: potential in non-destructive analysis of palimpsests. In Proc. Int. Conf. Image Processing (ICIP), vol. 2, 618--621.Google Scholar
- Saunders, D., and Cupitt, J. 1993. Image processing at the National Gallery: The VASARI project. National Gallery Tech. Bull. 14, 72--86.Google Scholar
- Stoddard, M. C., and Prum, R. O. 2008. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings. The American Naturalist 171, 6, 755--776.Google Scholar
Cross Ref
- Stoddard, M. C., and Prum, R. O. 2011. How colorful are birds? Evolution of the avian plumage color gamut. Behavioral Ecology 22, 5, 1042--1052.Google Scholar
Cross Ref
- Sugiura, H., Kuno, T., Watanabe, N., Matoba, N., Hayashi, J., and Miyata, Y. 2000. Development of a multi-spectral camera system. In Proc. SPIE 3965, 331--339.Google Scholar
- Sun, X., and Pitsianis, N. 2008. Solving non-negative linear inverse problems with the NeAREst method. Proc. SPIE 7074, 707402.Google Scholar
- Thoury, M., Elias, M., Frigerio, J. M., and Barthou, C. 2005. Non-destructive identification of varnishes by UV fluorescence spectroscopy. In Proc. SPIE 5857, 1--11.Google Scholar
- Vos, J. J. 1978. Colorimetric and photometric properties of a 2-deg fundamental observer. Color Res. Appl. 3, 125--128.Google Scholar
Cross Ref
- Wagadarikar, A., John, R., Willett, R., and Brady, D. J. 2008. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47, 10, B44--B51.Google Scholar
Cross Ref
- Wagadarikar, A. A., Pitsianis, N. P., Sun, X., and Brady, D. J. 2009. Video rate spectral imaging using a coded aperture snapshot spectral imager. Opt. Express 17, 8, 6368--6388.Google Scholar
Cross Ref
- Ware, G., Chabries, D., Christiansen, R., Brady, J., and Martin, C. 2000. Multispectral analysis of ancient Maya pigments: implications for the Naj Tunich Corpus. In Proc. IEEE Geoscience and Remote Sensing Symposium, vol. 6, 2489--2491.Google Scholar
- Wright, S., Nowak, R., and Figueiredo, M. 2009. Sparse reconstruction by separable approximation. IEEE Trans. Signal Processing 57, 7, 2479--2493. Google Scholar
Digital Library
- Zhao, Y., Berns, R. S., Taplin, L. A., and Coddington, J. 2008. An investigation of multispectral imaging for the mapping of pigments in paintings. In Proc. SPIE 6810, 1--9.Google Scholar
Index Terms
3D imaging spectroscopy for measuring hyperspectral patterns on solid objects
Recommendations
Compact snapshot hyperspectral imaging with diffracted rotation
Traditional snapshot hyperspectral imaging systems include various optical elements: a dispersive optical element (prism), a coded aperture, several relay lenses, and an imaging lens, resulting in an impractically large form factor. We seek an ...
Compact single-shot hyperspectral imaging using a prism
We present a novel, compact single-shot hyperspectral imaging method. It enables capturing hyperspectral images using a conventional DSLR camera equipped with just an ordinary refractive prism in front of the camera lens. Our computational imaging ...
Catadioptric hyperspectral imaging, an unmixing approach
Hyperspectral imaging systems provide dense spectral information on the scene under investigation by collecting data from a high number of contiguous bands of the electromagnetic spectrum. The low spatial resolutions of these sensors frequently give rise ...





Comments