skip to main content
research-article

Primal-dual coding to probe light transport

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present primal-dual coding, a photography technique that enables direct fine-grain control over which light paths contribute to a photo. We achieve this by projecting a sequence of patterns onto the scene while the sensor is exposed to light. At the same time, a second sequence of patterns, derived from the first and applied in lockstep, modulates the light received at individual sensor pixels. We show that photography in this regime is equivalent to a matrix probing operation in which the elements of the scene's transport matrix are individually re-scaled and then mapped to the photo. This makes it possible to directly acquire photos in which specific light transport paths have been blocked, attenuated or enhanced. We show captured photos for several scenes with challenging light transport effects, including specular inter-reflections, caustics, diffuse inter-reflections and volumetric scattering. A key feature of primal-dual coding is that it operates almost exclusively in the optical domain: our results consist of directly-acquired, unprocessed RAW photos or differences between them.

Skip Supplemental Material Section

Supplemental Material

tp127_12.mp4

References

  1. Bekas, C., Kokiopoulou, E., and Saad, Y. 2007. An estimator for the diagonal of a matrix. Appl. Numer. Math. 57, 11--12, 1214--1229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chandraker, M., Ng, T., and Ramamoorthi, R. 2010. A dual theory of inverse and forward light transport. In Proc. ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Clark, R. N. 2007. Canon 1D Mark II analysis. In http://wwwclarkvisioncom/articles/evaluation-1d2/.Google ScholarGoogle Scholar
  4. Corle, T. R., and Kino, G. S. 1996. Confocal scanning optical microscopy and related imaging systems. Academic Press.Google ScholarGoogle Scholar
  5. Debevec, P., Hawkins, T., Tchou, C., Duiker, H., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. ACM SIGGRAPH, 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fuchs, C., Heinz, M., Levoy, M., Scidel, H.-P., and Lensch, H. P. A. 2008. Combining confocal imaging and descattering. Computer Graphics Forum 27, 4, 1245--1253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In Proc. EGSR, 251--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly polarized spherical illumination reflectometry. ACM SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gupta, M., Agrawal, A., Veeraraghavan, A., and Narasimhan, S. 2011. Structured light 3D scanning in the presence of global illumination. In Proc. CVPR, 713--720. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Heintzmann, R., Hanley, Q., Arndt-Jovin, D., and Jovin, T. 2001. A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images. J. Microscopy 204, 119--135.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hitomi, Y., Gu, J., Gupta, M., Mitsunaga, T., and Nayar, S. K. 2011. Video from a single coded exposure photograph using a learned over-complete dictionary. In Proc. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Iso 2721:1982. Photography---Cameras---Automatic controls of exposure.Google ScholarGoogle Scholar
  13. Kirmani, A., Hutchison, T., Davis, J., and Raskar, R. 2011. Looking around the corner using ultrafast transient imaging. Int. J. Computer Vision 95, 1, 13--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Levoy, M., Chen, B., Vaish, V., Horowitz, M., Mcdowall, I., and Bolas, M. 2004. Synthetic aperture confocal imaging. ACM SIGGRAPH, 825--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Levoy, M., Ng, R., Adams, A., Footer, M., and Horowitz, M. 2006. Light field microscopy. ACM SIGGRAPH, 924--934. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mertz, J. 2011. Optical sectioning microscopy with planar or structured illumination. Nat. Meth. 8, 10, 811--819.Google ScholarGoogle ScholarCross RefCross Ref
  17. Nayar, S. K., Branzoi, V., and Boult, T. 2004. Programmable imaging using a digital micromirror array. In Proc. CVPR, 436--443.Google ScholarGoogle Scholar
  18. Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM SIGGRAPH, 935--944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency shadows using non-linear wavelet lighting approximation. ACM SIGGRAPH, 376--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. O'Toole, M., and Kutulakos, K. N. 2010. Optical computing for fast light transport analysis. ACM SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Peers, P., Mahajan, D. K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., and Debevec, P. 2009. Compressive light transport sensing. ACM Trans. on Graphics 28, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Popoff, S. M., Lerosey, G., Carminati, R., Fink, M., Boccara, A. C., and Gigan, S. 2010. Measuring the transmission matrix in optics. Phys. Rev. Lett. 104, 10.Google ScholarGoogle ScholarCross RefCross Ref
  23. Schechner, Y. Y., Nayar, S. K., and Belhumeur, P. N. 2007. Multiplexing for optimal lighting. IEEE T-PAMI 29, 8, 1339--1354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Seitz, S. M., Matsushita, Y., and Kutulakos, K. N. 2005. A theory of inverse light transport. In Proc. ICCV, 1440--1447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sen, P., and Darabi, S. 2009. Compressive dual photography. Computer Graphics Forum 28, 2, 609--618.Google ScholarGoogle ScholarCross RefCross Ref
  26. Sen, P., Chen, B., Garg, G., Marschner, S., Horowitz, M., Levoy, M., and Lensch, H. P. A. 2005. Dual photography. ACM SIGGRAPH, 745--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM SIGGRAPH, 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Tang, J. M., and Saad, Y. 2012. A probing method for computing the diagonal of a matrix inverse. Numer. Linear Algebra Appl. 19, 3, 485--501.Google ScholarGoogle ScholarCross RefCross Ref
  29. Veeraraghavan, A., Reddy, D., and Raskar, R. 2011. Coded strobing photography: compressive sensing of high speed periodic videos. IEEE T-PAMI 33, 4, 671--686. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wang, J., Dong, Y., Tong, X., Lin, Z., and Guo, B. 2009. Kernel Nyström method for light transport. ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wetzstein, G., Heidrich, W., and Luebke, D. 2010. Optical image processing using light modulation displays. Computer Graphics Forum 29, 6, 1934--1944.Google ScholarGoogle ScholarCross RefCross Ref
  32. Wilson, T., Juškaitis, R., and Neil, M. 1996. Confocal microscopy by aperture correlation. Optics Letters 21, 23.Google ScholarGoogle ScholarCross RefCross Ref
  33. Zhang, L., and Nayar, S. K. 2006. Projection defocus analysis for scene capture and image display. ACM SIGGRAPH, 907--915. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Primal-dual coding to probe light transport

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader