Abstract
We present primal-dual coding, a photography technique that enables direct fine-grain control over which light paths contribute to a photo. We achieve this by projecting a sequence of patterns onto the scene while the sensor is exposed to light. At the same time, a second sequence of patterns, derived from the first and applied in lockstep, modulates the light received at individual sensor pixels. We show that photography in this regime is equivalent to a matrix probing operation in which the elements of the scene's transport matrix are individually re-scaled and then mapped to the photo. This makes it possible to directly acquire photos in which specific light transport paths have been blocked, attenuated or enhanced. We show captured photos for several scenes with challenging light transport effects, including specular inter-reflections, caustics, diffuse inter-reflections and volumetric scattering. A key feature of primal-dual coding is that it operates almost exclusively in the optical domain: our results consist of directly-acquired, unprocessed RAW photos or differences between them.
Supplemental Material
Available for Download
Supplemental material.
- Bekas, C., Kokiopoulou, E., and Saad, Y. 2007. An estimator for the diagonal of a matrix. Appl. Numer. Math. 57, 11--12, 1214--1229. Google Scholar
Digital Library
- Chandraker, M., Ng, T., and Ramamoorthi, R. 2010. A dual theory of inverse and forward light transport. In Proc. ECCV. Google Scholar
Digital Library
- Clark, R. N. 2007. Canon 1D Mark II analysis. In http://wwwclarkvisioncom/articles/evaluation-1d2/.Google Scholar
- Corle, T. R., and Kino, G. S. 1996. Confocal scanning optical microscopy and related imaging systems. Academic Press.Google Scholar
- Debevec, P., Hawkins, T., Tchou, C., Duiker, H., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. ACM SIGGRAPH, 145--156. Google Scholar
Digital Library
- Fuchs, C., Heinz, M., Levoy, M., Scidel, H.-P., and Lensch, H. P. A. 2008. Combining confocal imaging and descattering. Computer Graphics Forum 27, 4, 1245--1253. Google Scholar
Digital Library
- Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In Proc. EGSR, 251--262. Google Scholar
Digital Library
- Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly polarized spherical illumination reflectometry. ACM SIGGRAPH Asia. Google Scholar
Digital Library
- Gupta, M., Agrawal, A., Veeraraghavan, A., and Narasimhan, S. 2011. Structured light 3D scanning in the presence of global illumination. In Proc. CVPR, 713--720. Google Scholar
Digital Library
- Heintzmann, R., Hanley, Q., Arndt-Jovin, D., and Jovin, T. 2001. A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images. J. Microscopy 204, 119--135.Google Scholar
Cross Ref
- Hitomi, Y., Gu, J., Gupta, M., Mitsunaga, T., and Nayar, S. K. 2011. Video from a single coded exposure photograph using a learned over-complete dictionary. In Proc. ICCV. Google Scholar
Digital Library
- Iso 2721:1982. Photography---Cameras---Automatic controls of exposure.Google Scholar
- Kirmani, A., Hutchison, T., Davis, J., and Raskar, R. 2011. Looking around the corner using ultrafast transient imaging. Int. J. Computer Vision 95, 1, 13--28. Google Scholar
Digital Library
- Levoy, M., Chen, B., Vaish, V., Horowitz, M., Mcdowall, I., and Bolas, M. 2004. Synthetic aperture confocal imaging. ACM SIGGRAPH, 825--834. Google Scholar
Digital Library
- Levoy, M., Ng, R., Adams, A., Footer, M., and Horowitz, M. 2006. Light field microscopy. ACM SIGGRAPH, 924--934. Google Scholar
Digital Library
- Mertz, J. 2011. Optical sectioning microscopy with planar or structured illumination. Nat. Meth. 8, 10, 811--819.Google Scholar
Cross Ref
- Nayar, S. K., Branzoi, V., and Boult, T. 2004. Programmable imaging using a digital micromirror array. In Proc. CVPR, 436--443.Google Scholar
- Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM SIGGRAPH, 935--944. Google Scholar
Digital Library
- Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency shadows using non-linear wavelet lighting approximation. ACM SIGGRAPH, 376--381. Google Scholar
Digital Library
- O'Toole, M., and Kutulakos, K. N. 2010. Optical computing for fast light transport analysis. ACM SIGGRAPH Asia. Google Scholar
Digital Library
- Peers, P., Mahajan, D. K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., and Debevec, P. 2009. Compressive light transport sensing. ACM Trans. on Graphics 28, 1. Google Scholar
Digital Library
- Popoff, S. M., Lerosey, G., Carminati, R., Fink, M., Boccara, A. C., and Gigan, S. 2010. Measuring the transmission matrix in optics. Phys. Rev. Lett. 104, 10.Google Scholar
Cross Ref
- Schechner, Y. Y., Nayar, S. K., and Belhumeur, P. N. 2007. Multiplexing for optimal lighting. IEEE T-PAMI 29, 8, 1339--1354. Google Scholar
Digital Library
- Seitz, S. M., Matsushita, Y., and Kutulakos, K. N. 2005. A theory of inverse light transport. In Proc. ICCV, 1440--1447. Google Scholar
Digital Library
- Sen, P., and Darabi, S. 2009. Compressive dual photography. Computer Graphics Forum 28, 2, 609--618.Google Scholar
Cross Ref
- Sen, P., Chen, B., Garg, G., Marschner, S., Horowitz, M., Levoy, M., and Lensch, H. P. A. 2005. Dual photography. ACM SIGGRAPH, 745--755. Google Scholar
Digital Library
- Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM SIGGRAPH, 527--536. Google Scholar
Digital Library
- Tang, J. M., and Saad, Y. 2012. A probing method for computing the diagonal of a matrix inverse. Numer. Linear Algebra Appl. 19, 3, 485--501.Google Scholar
Cross Ref
- Veeraraghavan, A., Reddy, D., and Raskar, R. 2011. Coded strobing photography: compressive sensing of high speed periodic videos. IEEE T-PAMI 33, 4, 671--686. Google Scholar
Digital Library
- Wang, J., Dong, Y., Tong, X., Lin, Z., and Guo, B. 2009. Kernel Nyström method for light transport. ACM SIGGRAPH. Google Scholar
Digital Library
- Wetzstein, G., Heidrich, W., and Luebke, D. 2010. Optical image processing using light modulation displays. Computer Graphics Forum 29, 6, 1934--1944.Google Scholar
Cross Ref
- Wilson, T., Juškaitis, R., and Neil, M. 1996. Confocal microscopy by aperture correlation. Optics Letters 21, 23.Google Scholar
Cross Ref
- Zhang, L., and Nayar, S. K. 2006. Projection defocus analysis for scene capture and image display. ACM SIGGRAPH, 907--915. Google Scholar
Digital Library
Index Terms
Primal-dual coding to probe light transport
Recommendations
Temporal frequency probing for 5D transient analysis of global light transport
We analyze light propagation in an unknown scene using projectors and cameras that operate at transient timescales. In this new photography regime, the projector emits a spatio-temporal 3D signal and the camera receives a transformed version of it, ...
A practical model for subsurface light transport
SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniquesThis paper introduces a simple model for subsurface light transport in translucent materials. The model enables efficient simulation of effects that BRDF models cannot capture, such as color bleeding within materials and diffusion of light across shadow ...
Efficient Simulation of Light Transport in Scenes with Participating Media Using Photon Maps
Seminal Graphics Papers: Pushing the Boundaries, Volume 2This paper presents a new method for computing global illumination in scenes with participating media. The method is based on bidirectional Monte Carlo ray tracing and uses photon maps to increase efficiency and reduce noise. We remove previous ...





Comments