skip to main content
research-article

Synthesis of detailed hand manipulations using contact sampling

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Capturing human activities that involve both gross full-body motion and detailed hand manipulation of objects is challenging for standard motion capture systems. We introduce a new method for creating natural scenes with such human activities. The input to our method includes motions of the full-body and the objects acquired simultaneously by a standard motion capture system. Our method then automatically synthesizes detailed and physically plausible hand manipulation that can seamlessly integrate with the input motions. Instead of producing one "optimal" solution, our method presents a set of motions that exploit a wide variety of manipulation strategies. We propose a randomized sampling algorithm to search for as many as possible visually diverse solutions within the computational time budget. Our results highlight complex strategies human hands employ effortlessly and unconsciously, such as static, sliding, rolling, as well as finger gaits with discrete relocation of contact points.

Skip Supplemental Material Section

Supplemental Material

a41-ye.avi

References

  1. Albrecht, I., Haber, J., and Seidel, H.-P. 2003. Construction and animation of anatomically based human hand models. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 98--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andersen, E. D., Jensen, B., Jensen, J., and Sandvik, R. 2009. Mosek version 6. Tech. Rep. TR-2009-3, Ulf Worsøe, October.Google ScholarGoogle Scholar
  3. Aydin, Y., and Nakajima, M. 1999. Database guided computer animation of human grasping using forward and inverse kinematics. Computers and Graphics 23, 1, 145--154.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cai, C., and Roth, B. 1987. On the spatial motion of a rigid body with point contact. In Proc. IEEE Int. Con. Robotics and Automation, 686--695.Google ScholarGoogle Scholar
  5. Chenney, S., and Forsyth, D. A. 2000. Sampling plausible solutions to multi-body constraint problems. In SISGGRAPH, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cherif, M., and Gupta, K. K. 1999. Planning quasi-static fingertip manipulations for reconfiguring objects. IEEE Trans. on Robotics and Automation 15, 5, 837--848.Google ScholarGoogle ScholarCross RefCross Ref
  7. Choi, M. G., Lee, J., and Shin, S. Y. 2003. Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Transactions on Graphics 22, 182--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ciocarlie, M. T., and Allen, P. K. 2008. On-line interactive dexterous grasping. Eurohaptics (June). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ciocarlie, M. T., Lackner, C., and Allen, P. K. 2007. Soft finger model with adaptive contact geometry for grasping and manipulation tasks. IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (March). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cole, A., Hsu, P., and Sastry, S. 1992. Dynamic control of sliding by robot hands for regrasping. IEEE Trans. on Robotics and Automation 8, 1, 42--52.Google ScholarGoogle ScholarCross RefCross Ref
  11. Coumans, E., 2005. Bullet physics engine. http://bulletphysics.org.Google ScholarGoogle Scholar
  12. Cyberglove Systems, http://www.cyberglovesystems.com/.Google ScholarGoogle Scholar
  13. Deshpande, A., Ko, J., Fox, D., and Matsuoka, Y. 2009. Anatomically correct testbed hand control: Muscle and joint control strategies. In Robotics and Automation, 2009. ICRA '09. IEEE International Conference on, 4416--4422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. ElKoura, G., and Singh, K. 2003. Handrix: Animating the human hand. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 110--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gill, P., Saunders, M., and Murray, W. 1996. Snopt: An sqp algorithm for large-scale constrained optimization. Tech. Rep. NA 96-2, University of California, San Diego.Google ScholarGoogle Scholar
  16. Gleicher, M. 1998. Retargeting motion to new characters. In SIGGRAPH, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hamer, H., Gall, J., Urtasun, R., and Gool, L. V. 2011. Data-driven animation of hand-object interactions. In IEEE Conference on Automatic Face and Gesture Recognition, 360--367.Google ScholarGoogle Scholar
  18. Han, L., and Trinkle, J. 1998. Dextrous manipulation by rolling and finger gaiting. In ICRA, IEEE, 730--735.Google ScholarGoogle Scholar
  19. Ho, E. S., Komura, T., and Tai, C.-L. 2010. Spatial relationship preserving character motion adaptation. ACM Trans. Graph 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hong, J., Lafferriere, G., Mishra, B., and Tang, X. 1990. Fine manipulation with multifinger hand. In ICRA, IEEE, 1568--1573.Google ScholarGoogle Scholar
  21. Huang, Z., Boulic, R., and Thalmann, D. 1995. A multi-sensor approach for grasping and 3-D interaction. In Computer Graphics International '95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jain, S., and Liu, C. K. 2009. Interactive synthesis of human-object interaction. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jain, S., and Liu, C. K. 2011. Controlling physics-based characters using soft contacts. ACM Trans. Graph. (SIGGRAPH Asia) 30 (Dec.), 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Joerg, S., Hodgins, J., and Sullivan, C. 2010. The perception of finger motions. Applied Perception in Graphics and Visualization (APGV). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M. H. 1996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. on Robotics and Automation 12, 4, 566--580.Google ScholarGoogle ScholarCross RefCross Ref
  26. Kim, J., Cordier, F., and Magnenat-Thalmann, N. 2000. Neural network-based violinistâs hand animation. In Conference on Computer Graphics International, 37--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Koga, Y., Kondo, K., Kuffner, J., and Latombe, J.-C. 1994. Planning motions with intentions. In SIGGRAPH, 395--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kry, P. G., and Pai, D. K. 2006. Interaction capture and synthesis. ACM Trans. on Graphics 25, 3 (Aug.), 872--880. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lavalle, S. M., and Kuffner, J. J. 2000. Rapidly-exploring random trees: Progress and prospects.Google ScholarGoogle Scholar
  30. Liu, L., Yin, K., van de Panne, M., Shao, T., and Xu, W. 2010. Sampling-based contact-rich motion control. ACM Trans. Graph.(SIGGRAPH) 29, 4, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Liu, C. K. 2009. Dextrous manipulation from a single grasping pose. ACM Transactions on Graphics (SIGGRAPH) 28, 3 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Majkowska, A., Zordan, V. B., and Faloutsos, P. 2006. Automatic splicing for hand and body animations. In Eurographics/SIGGRAPH Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Miller, A., and Allen, P. 1999. Examples of 3d grasp quality computations. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, vol. 2, 1240--1246 vol.2.Google ScholarGoogle Scholar
  34. Ngo, J. T., and Marks, J. 1993. Spacetime constraints revisited. In SIGGRAPH, vol. 27, 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Pollard, N. S., and Hodgins, J. K. 2002. Generalizing demonstrated manipualtion tasks. In Workshop on the Algorithmic Foundations of Robotics (WAFR '02).Google ScholarGoogle Scholar
  36. Pollard, N. S., and Wolf, A. 2004. Grasp synthesis from example: tuning the example to a task or object. In Workshop on Multi-point Interaction in Robotics and Virtual Reality, IEEE International Conference on Robotics and Automation, 77--90.Google ScholarGoogle Scholar
  37. Pollard, N. S., and Zordan, V. B. 2005. Physically based grasping control from example. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 311--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pollard, N. S. 2004. Closure and quality equivalence for efficient synthesis of grasps from examples. International Journal of Robotics Research 23, 6 (June), 595--614.Google ScholarGoogle ScholarCross RefCross Ref
  39. Sims, K. 1994. Evolving virtual creatures. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. Graph. (SIGGRAPH) 26, 3, 107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Trans. on Graphics 27, 3 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tournassoud, P., Lozano-Perez, T., and Mazer, E. 1987. Regrasping. In Proc. IEEE Int. Con. Robotics and Automation, 1924--1928.Google ScholarGoogle Scholar
  43. Tsang, W., Singh, K., and Fiume, E. 2005. Helping hand: An anatomically accurate inverse dynamics solution for unconstrained hand motion. In Eurographics/SIGGRAPH Symposium on Computer Animation, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Twigg, C. D., and James, D. L. 2007. Many-worlds browsing for control of multibody dynamics. ACM Trans. Graph 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. van de Panne, M., and Fiume, E. 1993. Sensor-actuator networks. In SIGGRAPH, vol. 27, 335--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Xu, J., Koo, T.-K. J., and Li, Z. 2007. Finger gaits planning for multifingered manipulation. In IROS, IEEE, 2932--2937.Google ScholarGoogle Scholar
  47. Yamane, K., Kuffner, J. J., and Hodgins, J. K. 2004. Synthesizing animations of human manipulation tasks. ACM Trans. Graph 23, 3, 532--539. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Synthesis of detailed hand manipulations using contact sampling

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader