skip to main content
research-article

Stochastic tomography and its applications in 3D imaging of mixing fluids

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present a novel approach for highly detailed 3D imaging of turbulent fluid mixing behaviors. The method is based on visible light computed tomography, and is made possible by a new stochastic tomographic reconstruction algorithm based on random walks. We show that this new stochastic algorithm is competitive with specialized tomography solvers such as SART, but can also easily include arbitrary convex regularizers that make it possible to obtain high-quality reconstructions with a very small number of views. Finally, we demonstrate that the same stochastic tomography approach can also be used to directly re-render arbitrary 2D projections without the need to ever store a 3D volume grid.

References

  1. Alexander, O., Rogers, M., Lambeth, W., Chiang, M., and Debevec, P. 2009. The Digital Emily project: photoreal facial modeling and animation. In SIGGRAPH Courses, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andersen, A., and Kak, A. 1984. Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm. Ultrasonic Imaging 6, 1, 81--94.Google ScholarGoogle ScholarCross RefCross Ref
  3. Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M., and Seidel, H.-P. 2008. Time-resolved 3D capture of non-stationary gas flows. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 27, 5, 132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barbuzza, R., and Clausse, A. 2011. Metropolis Monte Carlo for tomographic reconstruction with prior smoothness information. Image Processing, IET 5, 2 (Mar.), 198--204.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bickel, B., Botsch, M., Angst, R., and Miguel Otaduy, W. M., Pfister, H., and Gross, M. 2007. Multi-scale capture of facial geometry and motion. ACM Trans. Graph. (Proc. SIGGRAPH), 33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boubekeur, T. 2008. Markerless garment capture. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bradley, D., Atcheson, B., Ihrke, I., and Heidrich, W. 2009. Synchronization and rolling shutter compensation for consumer video camera arrays. In Proc. PROCAMS.Google ScholarGoogle Scholar
  8. Cline, D., Talbot, J., and Egbert, P. 2005. Energy redistribution path tracing. ACM Trans. Graph. 24 (July), 1186--1195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. de Aguiar, E., Theobalt, C., Stoll, C., and Seidel, H.-P. 2007. Marker-less deformable mesh tracking for human shape and motion capture. In Proc. CVPR.Google ScholarGoogle Scholar
  10. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., eidel, H.-P. S., and Thrun, S. 2008. Performance capture from sparse multi-view video. ACM Trans. Graph. (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Grant, I. 1997. Particle image velocimetry: A review. J. Mech. Eng. Science 211, 1, 55--76.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hasinoff, S., and Kutulakos, K. 2007. Photo-Consistent 3D Fire by Flame-Sheet Decomposition. IEEE Trans. PAMI 29, 5, 870--885. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1, 97--109.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hawkins, T., Einarsson, P., and Debevec, P. 2005. Acquisition of Time-varying Participating Media. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 812--815. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ihrke, I., and Magnor, M. 2004. Image-Based Tomographic Reconstruction of Flames. In Proc. SCA, 367--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ihrke, I., Goldluecke, B., and Magnor, M. 2005. Reconstructing the Geometry of Flowing Water. In Proc. ICCV, 1055--1060. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kak, A. C., and Slaney, M. 2001. Principles of computerized tomographic imaging. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: Dynamic light field display using multi-layer LCDs. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 6, 1087--1092.Google ScholarGoogle ScholarCross RefCross Ref
  20. Morris, N. J. W., and Kutulakos, K. N. 2005. Dynamic refraction stereo. In Proc. ICCV, 1573--1580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065--1076.Google ScholarGoogle ScholarCross RefCross Ref
  22. Rouf, M., Mantiuk, R., Heidrich, W., Trentacoste, M., and Lau, C. 2011. Glare encoding of high dynamic range images. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shepp, L. A., and Vardi, Y. 1982. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imag. 1, 2 (Oct.), 113--122.Google ScholarGoogle ScholarCross RefCross Ref
  24. Srinivasan, A., and Aggarwal, V. 2003. Stochastic linear solvers. In Proc. SIAM Conf. Applied Linear Algebra.Google ScholarGoogle Scholar
  25. Srinivasan, A. 2010. Monte Carlo linear solvers with nondiagonal splitting. Mathematics and Computers in Simulation 80, 6, 1133--1143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Talton, J., Lou, Y., Lesser, S., Duke, J., Méch, R., and Koltun, V. 2011. Metropolis procedural modeling. ACM Trans. Graph. 30, 2 (April). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Trifonov, B., Bradley, D., and Heidrich, W. 2006. Tomographic Reconstruction of Transparent Objects. In Proc. EGSR, 51--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In Computer Graphics (Proc. SIGGRAPH '97), 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wang, H., Liao, M., Zhang, Q., Yang, R., and Turk, G. 2009. Physically guided liquid surface modeling from videos. ACM Trans. Graph. 28 (July), 90:1--90:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wetzstein, G., Heidrich, W., and Raskar, R. 2011. Refractive shape from light field distortion. In Proc. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. White, R., Crane, K., and Forsyth, D. 2007. Capturing and animating occluded cloth. ACM Trans. Graph. (Proc. SIGGRAPH), 34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Xu, Q., Mou, X., Wang, G., Sieren, J., Hoffman, E., and Yu, H. 2011. Statistical interior tomography. IEEE Trans. Med. Imag. 30, 5 (May), 1116--1128.Google ScholarGoogle ScholarCross RefCross Ref
  34. Yu, H., and Wang, G. 2009. Compressed sensing based interior tomography. Physics in medicine and biology 54, 2791.Google ScholarGoogle Scholar

Index Terms

  1. Stochastic tomography and its applications in 3D imaging of mixing fluids

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 4
          July 2012
          935 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2185520
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2012
          Published in tog Volume 31, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader