skip to main content
research-article

Tracking surfaces with evolving topology

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present a method for recovering a temporally coherent, deforming triangle mesh with arbitrarily changing topology from an incoherent sequence of static closed surfaces. We solve this problem using the surface geometry alone, without any prior information like surface templates or velocity fields. Our system combines a proven strategy for triangle mesh improvement, a robust multi-resolution non-rigid registration routine, and a reliable technique for changing surface mesh topology. We also introduce a novel topological constraint enforcement algorithm to ensure that the output and input always have similar topology. We apply our technique to a series of diverse input data from video reconstructions, physics simulations, and artistic morphs. The structured output of our algorithm allows us to efficiently track information like colors and displacement maps, recover velocity information, and solve PDEs on the mesh as a post process.

Skip Supplemental Material Section

Supplemental Material

tp138_12.mp4

References

  1. Bargteil, A., Goktekin, T., O'brien, J., and Strain, J. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Transactions on Graphics (TOG) 25, 1, 19--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bargteil, A., Sin, F., Michaels, J., Goktekin, T., and O'Brien, J. 2006. A texture synthesis method for liquid animations. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), Eurographics Association, 345--351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Levy, B. 2010. Polygon mesh processing. AK Peters Ltd.Google ScholarGoogle Scholar
  4. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM Journal on Scientific Computing 31, 4, 2472--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Transactions on Graphics (TOG) 29, 4, 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Campen, M., and Kobbelt, L. 2010. Exact and robust (self-) intersections for polygonal meshes. Computer Graphics Forum (Eurographics) 29, 2, 397--406.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chang, W., Li, H., Mitra, N. J., Pauly, M., and Wand, M. 2010. Geometric registration for deformable shapes. In Eurographics 2010: Tutorial Notes.Google ScholarGoogle Scholar
  8. Dinh, H., Yezzi, A., Turk, G., et al. 2005. Texture transfer during shape transformation. ACM Transactions on Graphics (TOG) 24, 2, 289--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Du, J., Fix, B., Glimm, J., Jia, X., Li, X., Li, Y., and Wu, L. 2006. A simple package for front tracking. Journal of Computational Physics 213, 2, 613--628. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Transactions on Graphics (TOG) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Goktekin, T., Bargteil, A., and O'Brien, J. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics (TOG) 23, 3, 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jiao, X. 2007. Face offsetting: A unified approach for explicit moving interfaces. Journal of computational physics 220, 2, 612--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kagaya, M., Brendel, W., Deng, Q., Kesterson, T., Todorovic, S., Neill, P. J., and Zhang, E. 2011. Video painting with space-time-varying style parameters. IEEE Transactions on Visualization and Computer Graphics (TVCG) 17, 74--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kim, B., Liu, Y., Llamas, I., and Rossignac, J. 2007. Advections with significantly reduced dissipation and diffusion. IEEE Transactions on Visualization and Computer Graphics (TVCG) 13, 135--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kwatra, V., Adalsteinsson, D., Kim, T., Kwatra, N., Carlson, M., and Lin, M. 2007. Texturing fluids. IEEE Transactions on Visualization and Computer Graphics (TVCG) 13, 939--952. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. ACM Transactions on Graphics (TOG) 28, 5, 175:1--175:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Li, H., Luo, L., Vlasic, D., Peers, P., Popović, J., Pauly, M., and Rusinkiewicz, S. 2012. Temporally coherent completion of dynamic shapes. ACM Transactions on Graphics (TOG) 31, 1, 2:1--2:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mitra, N. J., Flory, S., Ovsjanikov, M., Gelfand, N., Guibas, L., and Pottmann, H. 2007. Dynamic geometry registration. In Proceedings of the fifth Eurographics Symposium on Geometry Processing (SGP), Eurographics Association, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Müller, M. 2009. Fast and robust tracking of fluid surfaces. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), ACM, 237--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Osher, S., and Fedkiw, R. 2003. Level set methods and dynamic implicit surfaces, vol. 153. Springer.Google ScholarGoogle Scholar
  21. Pons, J., and Boissonnat, J. 2007. Delaunay deformablemodels: Topology-adaptive meshes based on the restricted delaunay triangulation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 1--8.Google ScholarGoogle Scholar
  22. Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A., Amenta, N., and Cohen-Or, D. 2008. Space-time surface reconstruction using incompressible flow. ACM Transactions on Graphics (TOG) 27, 5, 110:1--110:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Stam, J., and Schmidt, R. 2011. On the velocity of an implicit surface. ACM Transactions on Graphics (TOG) 30, 3, 21:1--21:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sumner, N., Hoon, S., Geiger, W., Marino, S., Rasmussen, N., and Fedkiw, R. 2003. Melting a terminatrix. In ACM SIGGRAPH 2003 Sketches & Applications, ACM.Google ScholarGoogle Scholar
  25. Süssmuth, J., Winter, M., and Greiner, G. 2008. Reconstructing animated meshes from time-varying point clouds. Computer Graphics Forum (SGP) 27, 5, 1469--1476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tevs, A., Berner, A., Wand, M., Ihrke, I., Bokeloh, M., Kerber, J., and Seidel, H.-P. 2012. Animation cartography - intrinsic reconstruction of shape and motion. ACM Transactions on Graphics (TOG) 31, 2, 12:1--12:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics (TOG) 29, 4, 48:1--48:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wand, M., Jenke, P., Huang, Q.-X., Bokeloh, M., Guibas, L., and Schilling, A. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Proceedings of the fifth Eurographics Symposium on Geometry Processing (SGP), Eurographics Association, 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M., Jenke, P., Guibas, L., Seidel, H.-P., and Schilling, A. 2009. Efficient reconstruction of nonrigid shape and motion from real-time 3d scanner data. ACM Transactions on Graphics (TOG) 28, 2, 15:1--15:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wang, H., Liao, M., Zhang, Q., Yang, R., and Turk, G. 2009. Physically guided liquid surface modeling from videos. ACM Transactions on Graphics (TOG) 28, 3, 90:1--90:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wiebe, M., and Houston, B. 2004. The tar monster: Creating a character with fluid simulation. In ACM SIGGRAPH 2004 Sketches & Applications, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Transactions on Graphics (TOG) 28, 3, 76:1--76:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Transactions on Graphics (TOG) 29, 4, 50:1--50:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wojtan, C., Müller-Fischer, M., and Brochu, T. 2011. Liquid simulation with mesh-based surface tracking. In ACM SIGGRAPH 2011 Courses, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yu, J., Wojtan, C., Turk, G., and Yap, C. 2012. Explicit mesh surfaces for particle based fluids. Computer Graphics Forum (Eurographics) 31, 2, 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zaharescu, A., Boyer, E., and Horaud, R. P. 2007. TransforMesh: a topology-adaptive mesh-based approach to surface evolution. In Proceedings of the Eighth Asian Conference on Computer Vision, Springer, vol. II of LNCS 4844, 166--175. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Tracking surfaces with evolving topology

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader