skip to main content
research-article

Virtual ray lights for rendering scenes with participating media

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present an efficient many-light algorithm for simulating indirect illumination in, and from, participating media. Instead of creating discrete virtual point lights (VPLs) at vertices of random-walk paths, we present a continuous generalization that places virtual ray lights (VRLs) along each path segment in the medium. Furthermore, instead of evaluating the lighting independently at discrete points in the medium, we calculate the contribution of each VRL to entire camera rays through the medium using an efficient Monte Carlo product sampling technique. We prove that by spreading the energy of virtual lights along both light and camera rays, the singularities that typically plague VPL methods are significantly diminished. This greatly reduces the need to clamp energy contributions in the medium, leading to robust and unbiased volumetric lighting not possible with current many-light techniques. Furthermore, by acting as a form of final gather, we obtain higher-quality multiple-scattering than existing density estimation techniques like progressive photon beams.

Skip Supplemental Material Section

Supplemental Material

References

  1. Aila, T., and Laine, S. 2009. Understanding the efficiency of ray traversal on gpus. In Proc. of High Performance Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arbree, A., Walter, B., and Bala, K. 2008. Single-pass scalable subsurface rendering with lightcuts. Computer Graphics Forum 27, 2.Google ScholarGoogle ScholarCross RefCross Ref
  3. Baran, I., Chen, J., Ragan-Kelley, J., Durand, F., and Lehtinen, J. 2010. A hierarchical volumetric shadow algorithm for single scattering. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 29, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cerezo, E., Perez-Cazorla, F., Pueyo, X., Seron, F., and Sillion, F. 2005. A survey on participating media rendering techniques. The Visual Computer 21.Google ScholarGoogle Scholar
  5. Chandrasekar, S. 1960. Radiative Transfer. Dover Publications.Google ScholarGoogle Scholar
  6. Dammertz, H., Keller, A., and Lensch, H. P. A. 2010. Progressive point-light-based global illumination. Computer Graphics Forum 29, 8.Google ScholarGoogle ScholarCross RefCross Ref
  7. Dong, Z., Grosch, T., Ritschel, T., Kautz, J., and Seidel, H.-P. 2009. Real-time indirect illumination with clustered visibility. In Proc. Vision, Modeling, and Visualization Workshop.Google ScholarGoogle Scholar
  8. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Transactions on Graphics (Proc. SIGGRAPH) 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Engelhardt, T., and Dachsbacher, C. 2010. Epipolar sampling for shadows and crepuscular rays in participating media with single scattering. In Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Engelhardt, T., Novák, J., and Dachsbacher, C. 2010. Instant multiple scattering for interactive rendering of heterogeneous participating media. Tech. rep., Karlsruhe Institute of Technology, Dec.Google ScholarGoogle Scholar
  11. Georgiev, I., Křivánek, J., Popov, S., and Slusallek, P. 2012. Importance caching for complex illumination. Computer Graphics Forum (Proc. of Eurographics) 31, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gradshteyn, I. S., and Ryzhik, I. M. 1994. Table of Integrals, Series, and Products, Fifth Edition. Academic Press.Google ScholarGoogle Scholar
  13. Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Havran, V., Bittner, J., Herzog, R., and Seidel, H.-P. 2005. Ray maps for global illumination. In Proc. of Eurographics Symposium on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hašan, M., Pellacini, F., and Bala, K. 2007. Matrix row-column sampling for the many-light problem. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hašan, M., Křivánek, J., Walter, B., and Bala, K. 2009. Virtual spherical lights for many-light rendering of glossy scenes. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Heidrich, W., Brabec, S., and Seidel, H.-P. 2000. Soft shadow maps for linear lights. In Proc. of Eurographics Workshop on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Herzog, R., Havran, V., Kinuwaki, S., Myszkowski, K., and Seidel, H.-P. 2007. Global illumination using photon ray splatting. Computer Graphics Forum (Proc. of Eurographics) 26, 3.Google ScholarGoogle ScholarCross RefCross Ref
  21. Jarosz, W., Zwicker, M., and Jensen, H. W. 2008. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum (Proc. of Eurographics) 27, 2.Google ScholarGoogle ScholarCross RefCross Ref
  22. Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics (Proc. SIGGRAPH) 30, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P. P., and Zwicker, M. 2011. Progressive photon beams. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In Proc. of SIGGRAPH '98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proc. of SIGGRAPH '01. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jensen, H. W. 1996. Global illumination using photon maps. In Proc. of Eurographics Rendering Workshop. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kajiya, J. T. 1986. The rendering equation. In Computer Graphics (Proc. of SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Keller, A. 1997. Instant radiosity. In Proc. of SIGGRAPH '97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Transactions on Graphics 30, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kollig, T., and Keller, A. 2006. Illumination in the presence of weak singularities. In Monte Carlo and Quasi-Monte Carlo Methods 2004.Google ScholarGoogle Scholar
  32. Kulla, C., and Fajardo, M. 2011. Importance sampling of area lights in participating media. In ACM SIGGRAPH 2011 Talks. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Křivánek, J., Ferwerda, J. A., and Bala, K. 2010. Effects of global illumination approximations on material appearance. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Compugraphics '93.Google ScholarGoogle Scholar
  35. Lafortune, E. P., and Willems, Y. D. 1996. Rendering participating media with bidirectional path tracing. In Proceedings of the eurographics workshop on Rendering techniques. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J., and Aila, T. 2007. Incremental instant radiosity for real-time indirect illumination. In Proc. of Eurographics Symposium on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Lastra, M., Ureña, C., Revelles, J., and Montes, R. 2002. A particle-path based method for monte carlo density estimation. In Proc. of Eurographics Workshop on Rendering.Google ScholarGoogle Scholar
  38. Moon, J. T., and Marschner, S. R. 2006. Simulating multiple scattering in hair using a photon mapping approach. In ACM Transactions on Graphics (Proc. SIGGRAPH), ACM, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Novák, J., Engelhardt, T., and Dachsbacher, C. 2011. Screen-space bias compensation for interactive high-quality global illumination with virtual point lights. In Proc. of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ou, J., and Pellacini, F. 2011. Lightslice: Matrix slice sampling for the many-lights problem. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Pegoraro, V., and Parker, S. G. 2009. An analytical solution to single scattering in homogeneous participating media. Computer Graphics Forum (Proc. of Eurographics) 28, 2.Google ScholarGoogle ScholarCross RefCross Ref
  42. Pegoraro, V., Schott, M., and Parker, S. G. 2009. An analytical approach to single scattering for anisotropic media and light distributions. In Proc. of Graphics Interface. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Pegoraro, V., Schott, M., and Parker, S. G. 2010. A closed-form solution to single scattering for general phase functions and light distributions. Computer Graphics Forum (Proc. of Eurographics Symposium on Rendering) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Raab, M., Seibert, D., and Keller, A. 2008. Unbiased global illumination with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer.Google ScholarGoogle Scholar
  45. Reichert, M. C. 1992. A Two-pass Radiosity Method Driven by Lights and Viewer Position. Master's thesis, Cornell University.Google ScholarGoogle Scholar
  46. Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J. 2008. Imperfect shadow maps for efficient computation of indirect illumination. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Sun, B., Ramamoorthi, R., Narasimhan, S. G., and Nayar, S. K. 2005. A practical analytic single scattering model for real time rendering. ACM Transactions on Graphics (Proc. SIGGRAPH) 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Sun, X., Zhou, K., Lin, S., and Guo, B. 2010. Line space gathering for single scattering in large scenes. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Proc. of Eurographics Rendering Workshop.Google ScholarGoogle Scholar
  50. Veach, E. 1997. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wald, I., Kollig, T., Benthin, C., Keller, A., and Slusallek, P. 2002. Interactive global illumination using fast ray tracing. In Proc. of Eurographics Workshop on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: a scalable approach to illumination. ACM Transactions on Graphics (Proc. SIGGRAPH) 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. 2006. Multidimensional lightcuts. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Virtual ray lights for rendering scenes with participating media

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader