skip to main content
research-article

Ghost SPH for animating water

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We propose a new ghost fluid approach for free surface and solid boundary conditions in Smoothed Particle Hydrodynamics (SPH) liquid simulations. Prior methods either suffer from a spurious numerical surface tension artifact or drift away from the mass conservation constraint, and do not capture realistic cohesion of liquid to solids. Our Ghost SPH scheme resolves this with a new particle sampling algorithm to create a narrow layer of ghost particles in the surrounding air and solid, with careful extrapolation and treatment of fluid variables to reflect the boundary conditions. We also provide a new, simpler form of artificial viscosity based on XSPH. Examples demonstrate how the new approach captures real liquid behaviour previously unattainable by SPH with very little extra cost.

Skip Supplemental Material Section

Supplemental Material

tp143_12.mp4

References

  1. Adams, B., Pauly, P., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Becker, M., and Teschner, M. 2007. Weakly compressible sph for free surface flows. In Proc. ACM SIGGRAPH/Eurographics SCA, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Becker, M., Tessendorf, H., and Teschner, M. 2009. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Transactions on Visualization and Computer Graphics 15, 3, 493--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bonet, J., and Kulasegaram, S. 2002. A simplified approach to enhance the performance of smooth particle hydrodynamics methods. Appl. Math. Comput. 126, 2-3, 133--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bridson, R. 2007. Fast Poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH Technical Sketches. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chentanez, N., and Müller, M. 2011. A multigrid fluid pressure solver handling separating solid boundary conditions. In Proc. Symp. Comp. Anim., 83--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Colagrossi, A., and Landrini, M. 2003. Numerical simulation of interfacial flows by Smoothed Particle Hydrodynamics. J. Comp. Phys. 191, 2, 448--475. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. ACM Trans. on Graphics (Proc. SIGGRAPH) 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. 1999. A non-osillatory Eulerian approach in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152, 457--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fedkiw, R. 2002. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the Ghost Fluid Method. J. Comp. Phys. 175, 200--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gingold, R. A., and Monaghan, J. J. 1977. Smoothed Particle Hydrodynamics - theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375--389.Google ScholarGoogle Scholar
  14. Ihmsen, M., Akinci, N., Gissler, M., and Teschner, M. 2010. Boundary handling and adaptive time-stepping for PCISPH. In Proc. VRIPHYS, 79--88.Google ScholarGoogle Scholar
  15. Keiser, R., Adams, B., Guibas, L. J., Dutré, P., and Pauly, M. 2006. Multiresolution particle-based fluids. Tech. Rep. 520.Google ScholarGoogle Scholar
  16. Lucy, L. B. 1977. A numerical approach to the testing of the fission hypothesis. Astron. J 82, 1013--1024.Google ScholarGoogle ScholarCross RefCross Ref
  17. Monaghan, J. J. 1989. On the problem of penetration in particle methods. J. Comput. Phys. 82, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Monaghan, J. J. 1994. Simulating free surface flows with SPH. J. Comput. Phys. 110, 399--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Monaghan, J. J. 2005. Smoothed Particle Hydrodynamics. Reports on Progress in Physics 68, 8, 1703--1759.Google ScholarGoogle ScholarCross RefCross Ref
  20. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. ACM SIGGRAPH/Eurographics SCA, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Müller, M., Solenthaler, B., and Keiser, R. 2005. Particle-based fluid-fluid interaction. In Proc. ACM SIGGRAPH/Eurographics SCA, 237--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Solenthaler, B., and Gross, M. 2011. Two-scale particle simulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 30, 4, 81:1--81:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Solenthaler, B., and Pajarola, R. 2008. Density contrast SPH interfaces. In Proc. ACM SIGGRAPH/Eurographics SCA, 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible SPH. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Turk, G. 1992. Re-tiling polygonal surfaces. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Ghost SPH for animating water

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 4
          July 2012
          935 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2185520
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2012
          Published in tog Volume 31, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader