skip to main content
research-article

Versatile rigid-fluid coupling for incompressible SPH

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We propose a momentum-conserving two-way coupling method of SPH fluids and arbitrary rigid objects based on hydrodynamic forces. Our approach samples the surface of rigid bodies with boundary particles that interact with the fluid, preventing deficiency issues and both spatial and temporal discontinuities. The problem of inhomogeneous boundary sampling is addressed by considering the relative contribution of a boundary particle to a physical quantity. This facilitates not only the initialization process but also allows the simulation of multiple dynamic objects. Thin structures consisting of only one layer or one line of boundary particles, and also non-manifold geometries can be handled without any additional treatment. We have integrated our approach into WCSPH and PCISPH, and demonstrate its stability and flexibility with several scenarios including multiphase flow.

Skip Supplemental Material Section

Supplemental Material

tp144_12.mp4

References

  1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3, 48--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Akinci, G., Ihmsen, M., Akinci, N., and Teschner, M. 2012. Parallel surface reconstruction for particle-based fluids. Computer Graphics Forum, to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Allard, J., Courtecuisse, H., and Faure, F. 2011. Implicit FEM and fluid coupling on GPU for interactive multiphysics simulation. In SIGGRAPH Talks. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3, 100--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In Proc. of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 209--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated SPH for deformable solids. Eurographics Workshop on Natural Phenomena, 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Becker, M., Tessendorf, H., and Teschner, M. 2009. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Transactions on Visualization and Computer Graphics 15, 3, 493--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bell, N., Yu, Y., and Mucha, P. J. 2005. Particle-based simulation of granular materials. In Proc. of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bodin, K., Lacoursiere, C., and Servin, M. 2011. Constraint fluid. IEEE Transactions on Visualization and Computer Graphics, 99, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Botsch, M., and Kobbelt, L. 2004. A remeshing approach to multiresolution modeling. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symposium on Geometry processing, 185--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Carlson, M., Mucha, P., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 3, 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chentanez, N., and Müller, M. 2010. Real-time simulation of large bodies of water with small scale details. In Proc. of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chentanez, N., Goktekin, T., Feldman, B., and O'Brien, J. 2006. Simultaneous coupling of fluids and deformable bodies. In Proc. of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 83--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Coumans, E., 2011. Bullet physics library (version 2.78) {software}. http://www.bulletphysics.org.Google ScholarGoogle Scholar
  16. Dalrymple, R., and Knio, O. 2001. SPH modeling of water waves. In Proc. Coastal Dynamics, 779--787.Google ScholarGoogle Scholar
  17. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 973--981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Harada, T., Koshizuka, S., and Kawaguchi, Y. 2007. Smoothed particle hydrodynamics on GPUs. In Proc. of Computer Graphics International, 63--70.Google ScholarGoogle Scholar
  19. Hu, X., and Adams, N. 2006. A multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics 213, 2, 844--861. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ihmsen, M., Akinci, N., Gissler, M., and Teschner, M. 2010. Boundary handling and adaptive time-stepping for PCISPH. In Proc. of VRIPHYS, 79--88.Google ScholarGoogle Scholar
  21. Ihmsen, M., Akinci, N., Becker, M., and Teschner, M. 2011. A parallel SPH implementation on multi-core CPUs. Computer Graphics Forum 30, 1, 99--112.Google ScholarGoogle ScholarCross RefCross Ref
  22. Keiser, R., Adams, B., Dutré, P., Guibas, L., and Pauly, M. 2006. Multiresolution particle-based fluids. Tech. rep., ETH Zurich.Google ScholarGoogle Scholar
  23. Lenaerts, T., and Dutré, P. 2008. Unified SPH model for fluid-shell simulations. In ACM SIGGRAPH 2008 posters, SIGGRAPH '08, 12:1--12:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lenaerts, T., Adams, B., and Dutré, P. 2008. Porous flow in particle-based fluid simulations. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Libersky, L., and Petschek, A. 1991. Smooth particle hydrodynamics with strength of materials. Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method 395, 248--257.Google ScholarGoogle ScholarCross RefCross Ref
  26. Monaghan, J., and Kajtar, J. 2009. SPH particle boundary forces for arbitrary boundaries. Computer Physics Communications 180, 10, 1811--1820.Google ScholarGoogle ScholarCross RefCross Ref
  27. Monaghan, J., and Kos, A. 1999. Solitary waves on a Cretan beach. Journal of Waterway, Port, Coastal, and Ocean Engineering 125, 145.Google ScholarGoogle ScholarCross RefCross Ref
  28. Monaghan, J. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics 68, 8, 1703--1759.Google ScholarGoogle ScholarCross RefCross Ref
  29. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., and Gross, M. 2004. Interaction of fluids with deformable solids. Computer Animation and Virtual Worlds 15, 34, 159--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. NVIDIA ARC, 2011. mental ray 3.9 {software}. http://www.mentalimages.com/products/mental-ray/about-mental-ray.html.Google ScholarGoogle Scholar
  32. Oger, G., Doring, M., Alessandrini, B., and Ferrant, P. 2006. Two-dimensional SPH simulations of wedge water entries. Journal of Computational Physics 213, 2, 803--822. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Oh, S., Kim, Y., and Roh, B. 2009. Impulse-based rigid body interaction in SPH. Computer Animation and Virtual Worlds 20, 2-3, 215--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Panizzo, A. 2004. Physical and numerical modelling of subaerial landslide generated waves. PhD thesis, Universita degli studi di L'Aquila, L'Aquila.Google ScholarGoogle Scholar
  35. Raveendran, K., Wojtan, C., and Turk, G. 2011. Hybrid smoothed particle hydrodynamics. In Proc. of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. (SIGGRAPH Proc.) 27, 46:1--46:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Solenthaler, B., and Gross, M. 2011. Two-scale particle simulation. ACM Trans. on Graphics (SIGGRAPH Proc.) 30, 4, 81:1--81:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Solenthaler, B., and Pajarola, R. 2008. Density Contrast SPH Interfaces. In Proc. of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible SPH. ACM Trans. on Graphics (SIGGRAPH Proc.) 28, 3, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 1, 69--82. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Versatile rigid-fluid coupling for incompressible SPH

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader