skip to main content
research-article

Interactive spacetime control of deformable objects

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Creating motions of objects or characters that are physically plausible and follow an animator's intent is a key task in computer animation. The spacetime constraints paradigm is a valuable approach to this problem, but it suffers from high computational costs. Based on spacetime constraints, we propose a framework for controlling the motion of deformable objects that offers interactive response times. This is achieved by a model reduction of the underlying variational problem, which combines dimension reduction, multipoint linearization, and decoupling of ODEs. After a preprocess, the cost for creating or editing a motion is reduced to solving a number of one-dimensional spacetime problems, whose solutions are the wiggly splines introduced by Kass and Anderson [2008]. We achieve interactive response times through a new fast and robust numerical scheme for solving the one-dimensional problems that is based on a closed-form representation of the wiggly splines.

Skip Supplemental Material Section

Supplemental Material

tp162_12.mp4

References

  1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. of ACM SIGGRAPH, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barbič, J., and James, D. L. 2005. Real-time subspaceintegration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 53:1--53:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barzel, R. 1997. Faking dynamics of ropes and springs. IEEE Comput. Graph. Appl. 17, 31--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: Toward Directable Thin Shells. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chai, J., and Hodgins, J. K. 2007. Constraint-based motion optimization using a statistical dynamic model. ACM Trans. Graph. 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 38:1-38:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cohen, M. F. 1992. Interactive spacetime control for animation. Proc of ACM SIGGRAPH 26, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gauss, C. F. 1829. Über ein neues allgemeines Grundgesetz der Mechanik. J. Reine Angew. Math. 4, 232--235.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gleicher, M. 1997. Motion editing with spacetime constraints. In Proc. of Symp. on Interactive 3D Graphics, 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Griewank, A., Juedes, D., and Utke, J. 1996. Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Softw. 22, 2, 131--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Guenter, B. 2007. Efficient symbolic differentiation for graphics applications. ACM Trans. Graph. 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 119:1--119:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2012. Modal shape analysis beyond Laplacian. Computer Aided Geometric Design 29, 5, 204--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3, 1126--1134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Idelsohn, S. R., and Cardona, A. 1985. A reduction method for nonlinear structural dynamic analysis. Comput. Meth. Appl. Mech. Eng. 49, 3, 253--279.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kass, M., and Anderson, J. 2008. Animating oscillatory motion with overlap: wiggly splines. ACM Trans. Graph. 27, 28:1--28:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. ACM Trans. Graph. 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28, 123:1--123:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Meth. Eng. 51, 479--504.Google ScholarGoogle ScholarCross RefCross Ref
  23. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23, 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Nickell, R. 1976. Nonlinear dynamics by mode superposition. Comput. Meth. Appl. Mech. Eng. 7, 1, 107--129.Google ScholarGoogle ScholarCross RefCross Ref
  25. Pentland, A., and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. Proc. of ACM SIGGRAPH 23, 207--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Popović, J., Seitz, S. M., and Erdmann, M. 2003. Motion sketching for control of rigid-body simulations. ACM Trans. Graph. 22, 1034--1054. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ritchie, K., Callery, J., and Biri, K. 2005. The Art of Rigging. CG Toolkit.Google ScholarGoogle Scholar
  28. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Shabana, A. 1997. Theory of Vibration II: Vibration of Discrete and Continuous Systems, 2nd ed. Springer Verlag.Google ScholarGoogle Scholar
  30. Sulejmanpašić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Trans. Graph. 24, 165--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proc. of ACM SIGGRAPH, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. 22, 716--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Trans. Graph. 25, 826--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. ACM Trans. Graph. 28, 39:1--39:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wirth, B., Bar, L., Rumpf, M., and Sapiro, G. 2009. Geodesics in shape space via variational time discretization. In Proc. of the 7th Intern. Conf. on Energy Minimization Methods in Computer Vision and Pattern Recognition, 288--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Witkin, A., and Kass, M. 1988. Spacetime constraints. Proc. of ACM SIGGRAPH 22, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wojtan, C., Mucha, P. J., and Turk, G. 2006. Keyframe control of complex particle systems using the adjoint method. In Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 15--23. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interactive spacetime control of deformable objects

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 4
          July 2012
          935 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2185520
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2012
          Published in tog Volume 31, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader