skip to main content
research-article

Rig-space physics

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present a method that brings the benefits of physics-based simulations to traditional animation pipelines. We formulate the equations of motions in the subspace of deformations defined by an animator's rig. Our framework fits seamlessly into the workflow typically employed by artists, as our output consists of animation curves that are identical in nature to the result of manual keyframing. Artists can therefore explore the full spectrum between handcrafted animation and unrestricted physical simulation. To enhance the artist's control, we provide a method that transforms stiffness values defined on rig parameters to a non-homogeneous distribution of material parameters for the underlying FEM model. In addition, we use automatically extracted high-level rig parameters to intuitively edit the results of our simulations, and also to speed up computation. To demonstrate the effectiveness of our method, we create compelling results by adding rich physical motions to coarse input animations. In the absence of artist input, we create realistic passive motion directly in rig space.

Skip Supplemental Material Section

Supplemental Material

References

  1. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3d characters. In Proc. of ACM SIGGRAPH '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barbić, J., and James, D. L. 2010. Subspace self-collision culling. In Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barbić, J., and Zhao, Y. 2011. Real-time large-deformation substructuring. In Proc. of ACM SIGGRAPH '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barr, A. H. 1984. Global and local deformations of solid primitives. In Proc. of ACM SIGGRAPH '84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. In Proc. of ACM SIGGRAPH '02. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dambreville, S., Rathi, Y., and Tannen, A. 2006. Shape-based approach to robust image segmentation using kernel PCA. In Computer Vision and Pattern Recognition (CVPR) '06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE Trans. on Visualization and Computer Graphics 3, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fröhlich, S., and Botsch, M. 2011. Example-driven deformations based on discrete shells. Computer Graphics Forum 30.Google ScholarGoogle Scholar
  9. Gilles, B., Bousquet, G., Faure, F., and Pai, D. 2011. Frame-based elastic models. ACM Trans. on Graphics 30, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. of Symp. on Computer Animation (SCA) '04. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. James, D. L., and Fatahalian, K. 2003. Precomputing inter-active dynamic deformable scenes. In Proc. of ACM SIGGRAPH '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. In Proc. of ACM SIGGRAPH '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ju, T., Zhou, Q.-Y., van de Panne, M., Cohen-Or, D., and Neumann, U. 2008. Reusable skinning templates using cage-based deformations. In Proc. of ACM SIGGRAPH Asia '08. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. In Proc. of ACM SIGGRAPH '09. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Krause, R., and Walloth, M. 2009. A time discretization scheme based on rothes method for dynamical contact problems with friction. Computer Methods in Applied Mechanics and Engineering 199, 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  16. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 51, 4.Google ScholarGoogle ScholarCross RefCross Ref
  17. Levin, D. I. W., Litven, J., Jones, G. L., Sueda, S., and Pai, D. K. 2011. Eulerian solid simulation with contact. In Proc. of ACM SIGGRAPH '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. of ACM SIGGRAPH '00. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Li, H., Weise, T., and Pauly, M. 2010. Example-based facial rigging. In Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. 1989. Joint-dependent local deformations for hand animation and object grasping. In Proc. of Graphics Interface '88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. In Proc. of ACM SIGGRAPH '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. In Proc. of ACM SIGGRAPH '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nocedal, J., and Wright, S. J. 2006. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  24. Rohmer, D., Hahmann, S., and Cani, M.-P. 2009. Exact volume preserving skinning with shape control. In Proc. of Symp. on Computer Animation (SCA) '09. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Savoye, Y., and Franco, J.-S. 2010. CageIK: dual-laplacian cage-based inverse kinematics. In Proceedings of the 6th international conference on Articulated motion and deformable objects (ADMO) '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Proc. of ACM SIGGRAPH '86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Seol, Y., Seo, J., Kim, P. H., Lewis, J. P., and Noh, J. 2011. Artist friendly facial animation retargeting. In Proc. of ACM SIGGRAPH Asia '11. Google ScholarGoogle Scholar
  28. Singh, K., and Fiume, E. L. 1998. Wires: A geometric deformation technique. In Proc. of ACM SIGGRAPH '98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sloan, P.-P. J., Rose, III, C. F., and Cohen, M. F. 2001. Shape by example. In Proc. of Symp. on Interactive 3D Graphics '01. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. In Proc. of ACM SIGGRAPH '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Whitaker, H., and Halas, J. 2002. Timing for Animation. Focal Press.Google ScholarGoogle Scholar
  32. Yamane, K. 2004. Simulating and Generating Motions of Human Figures. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Rig-space physics

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader