skip to main content
research-article

Gabor noise by example

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Procedural noise is a fundamental tool in Computer Graphics. However, designing noise patterns is hard. In this paper, we present Gabor noise by example, a method to estimate the parameters of bandwidth-quantized Gabor noise, a procedural noise function that can generate noise with an arbitrary power spectrum, from exemplar Gaussian textures, a class of textures that is completely characterized by their power spectrum. More specifically, we introduce (i) bandwidth-quantized Gabor noise, a generalization of Gabor noise to arbitrary power spectra that enables robust parameter estimation and efficient procedural evaluation; (ii) a robust parameter estimation technique for quantized-bandwidth Gabor noise, that automatically decomposes the noisy power spectrum estimate of an exemplar into a sparse sum of Gaussians using non-negative basis pursuit denoising; and (iii) an efficient procedural evaluation scheme for bandwidth-quantized Gabor noise, that uses multi-grid evaluation and importance sampling of the kernel parameters. Gabor noise by example preserves the traditional advantages of procedural noise, including a compact representation and a fast on-the-fly evaluation, and is mathematically well-founded.

Skip Supplemental Material Section

Supplemental Material

References

  1. Beck, A., and Teboulle, M. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Img. Sci. 2, 183--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bovik, A. C., Clark, M., and Geisler, W. S. 1990. Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Mach. Intell. 12, 1, 55--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cardoso, J.-F., and Souloumiac, A. 1996. Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 17, 161--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cook, R. L., and DeRose, T. 2005. Wavelet noise. ACM Trans. Graph. 24, 3, 803--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dischler, J.-M., and Ghazanfarpour, D. 1997. A procedural description of geometric textures by spectral and spatial analysis of profiles. Comp. Graph. Forum 16, 3, 129--139.Google ScholarGoogle ScholarCross RefCross Ref
  6. Ferreira, P. 1998. A comment on the approximation of signals by gaussian functions. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45, 2, 250--251.Google ScholarGoogle ScholarCross RefCross Ref
  7. Francos, J. M., Meiri, A. Z., and Porat, B. 1993. A unified texture model based on a 2-D Wold-like decomposition. IEEE Trans. Signal Process. 41, 8, 2665--2678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Galerne, B., Gousseau, Y., and Morel, J. 2011. Random phase textures: Theory and synthesis. IEEE Trans. Image Process. 20, 1, 257--267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ghazanfarpour, D., and Dischler, J.-M. 1995. Spectral analysis for automatic 3-d texture generation. Comp. & Graph. 19, 3, 413--422.Google ScholarGoogle Scholar
  10. Ghazanfarpour, D., and Dischler, J.-M. 1996. Generation of 3d texture using multiple 2d models analysis. Comp. Graph. Forum 15, 3, 311--323.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gilet, G., and Dischler, J.-M. 2010. An image-based approach for stochastic volumetric and procedural details. Comp. Graph. Forum 29, 4, 1411--1419. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gilet, G., Dischler, J.-M., and Soler, L. 2010. Procedural descriptions of anisotropic noisy textures by example. In EG 2010 - Short papers, 77--80.Google ScholarGoogle Scholar
  13. Goldberg, A., Zwicker, M., and Durand, F. 2008. Anisotropic noise. ACM Trans. Graph. 27, 3, 54:1--54:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Heeger, D. J., and Bergen, J. R. 1995. Pyramid-based texture analysis/synthesis. In Proc. ACM SIGGRAPH 1995, 229--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hyvärinen, A., Karhunen, J., and Oja, E. 2001. Independent Component Analysis. John Wiley & Sons.Google ScholarGoogle Scholar
  16. Jeschke, S., Cline, D., and Wonka, P. 2011. Estimating color and texture parameters for vector graphics. Comp. Graph. Forum 30, 2, 523--532.Google ScholarGoogle ScholarCross RefCross Ref
  17. Kim, S.-J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D. 2007. An interior-point method for large-scale l1-regularized least squares. IEEE J. Sel. Topics Signal Process. 1, 4, III--117--III--120.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., and Wong, T.-T. 2007. Solid texture synthesis from 2D exemplars. ACM Trans. Graph. 26, 3, 2:1--2:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lagae, A., and Drettakis, G. 2011. Filtering solid Gabor noise. ACM Trans. Graph. 30, 4, 51:1--51:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lagae, A., Lefebvre, S., Drettakis, G., and Dutré, P. 2009. Procedural noise using sparse Gabor convolution. ACM Trans. Graph. 28, 3, 54:1--54:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lagae, A., Lefebvre, S., Cook, R., DeRose, T., Drettakis, G., Ebert, D. S., Lewis, J. P., Perlin, K., and Zwicker, M. 2010. A survey of procedural noise functions. Comp. Graph. Forum 29, 8, 2579--2600.Google ScholarGoogle ScholarCross RefCross Ref
  22. Lagae, A., Vangorp, P., Lenaerts, T., and Dutré, P. 2010. Procedural isotropic stochastic textures by example. Comp. & Graph. 34, 4, 312--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lefebvre, S., and Hoppe, H. 2005. Parallel controllable texture synthesis. ACM Trans. Graph. 24, 3, 777--786. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lewis, J. P. 1989. Algorithms for solid noise synthesis. In Comp. Graph. (Proc. ACM SIGGRAPH 89), vol. 23, 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Liu, F. 1997. Modeling spatial and temporal textures. PhD thesis, Massachusetts Institute of Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mairal, J., Jenatton, R., Obozinski, G., and Bach, F. 2011. Convex and network flow optimization for structured sparsity. J. Mach. Learn. Res. 12, 2681--2720. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Moisan, L. 2011. Periodic plus smooth image decomposition. J. Math. Imag. Vis. 39, 161--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Comp. Graph. Forum 30, 2, 503--511.Google ScholarGoogle ScholarCross RefCross Ref
  29. Papoulis, A., and Pillai, U. 2002. Probability, Random Variables and Stochastic Processes, 4rd ed. McGraw-Hill.Google ScholarGoogle Scholar
  30. Perlin, K. 1985. An image synthesizer. In Comp. Graph. (Proc. ACM SIGGRAPH 85), vol. 19, 287--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Press, W. H., Vetterling, W. T., Teukolsky, S. A., and Flannery, B. P. 2002. Numerical Recipes in C++: the art of scientific computing, 2nd ed. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Qin, X., and Yang, Y.-H. 2007. Aura 3d textures. Visualization and Computer Graphics, IEEE Transactions on 13, 2, 379--389. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Vose, M. D. 1991. A linear algorithm for generating random numbers with a given distribution. IEEE Trans. Softw. Eng. 17, 972--975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Walker, A. J. 1977. An efficient method for generating discrete random variables with general distributions. ACM Trans. Math. Softw. 3, 3, 253--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. 2009. State of the art in example-based texture synthesis. In Eurographics 2009 State of the Art Reports, 93--117.Google ScholarGoogle Scholar
  36. Xue, S., Dorsey, J., and Rushmeier, H. 2011. Stone weathering in a photograph. Comp. Graph. Forum 30, 4, 1189--1196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yoon, J.-C., and Lee, I.-K. 2008. Stable and controllable noise. Graph. Models 70, 5, 105--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yoon, J.-C., Lee, I.-K., and Choi, J.-J. 2004. Editing noise. Comp. Anim. Virtual Worlds 15, 3-4, 277--287. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 31, Issue 4
    July 2012
    935 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2185520
    Issue’s Table of Contents

    Copyright © 2012 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 1 July 2012
    Published in tog Volume 31, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader