skip to main content
research-article

Point sampling with general noise spectrum

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Point samples with different spectral noise properties (often defined using color names such as white, blue, green, and red) are important for many science and engineering disciplines including computer graphics. While existing techniques can easily produce white and blue noise samples, relatively little is known for generating other noise patterns. In particular, no single algorithm is available to generate different noise patterns according to user-defined spectra.

In this paper, we describe an algorithm for generating point samples that match a user-defined Fourier spectrum function. Such a spectrum function can be either obtained from a known sampling method, or completely constructed by the user. Our key idea is to convert the Fourier spectrum function into a differential distribution function that describes the samples' local spatial statistics; we then use a gradient descent solver to iteratively compute a sample set that matches the target differential distribution function. Our algorithm can be easily modified to achieve adaptive sampling, and we provide a GPU-based implementation. Finally, we present a variety of different sample patterns obtained using our algorithm, and demonstrate suitable applications.

Skip Supplemental Material Section

Supplemental Material

tp158_12.mp4

References

  1. Alliez, P., Meyer, M., and Desbrun, M. 2002. Interactive geometry remeshing. In SIGGRAPH '02, 347--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Balzer, M., Schlomer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. In SIGGRAPH '09, 86:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bracewell, R. 1999. The Fourier Transform and Its Applications. McGraw-Hill.Google ScholarGoogle Scholar
  4. Chang, J., Alain, B., and Ostromoukhov, V. 2009. Structure-aware error diffusion. In SIGGRAPH Asia '09, 162:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Condit, R., Ashton, P. S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N., Hubbell, S. P., Foster, R. B., Itoh, A., LaFrankie, J. V., Lee, H. S., Losos, E., Manokaran11, N., Sukumar, R., and Yamakura, T. 2000. Spatial patterns in the distribution of tropical tree species. Science 288, 5470, 1414--1418.Google ScholarGoogle Scholar
  6. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dale, M. R. T., Dixon, P., Fortin, M.-J., Legendre, P., Myers, D. E., and Rosenberg, M. S. 2002. Conceptual and mathematical relationships among methods for spatial analysis. ECOGRAPHY, 25, 558--577.Google ScholarGoogle ScholarCross RefCross Ref
  8. Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In SIGGRAPH '85, 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dutre, P., Bala, K., and Bekaert, P. 2002. Advanced Global Illumination. A. K. Peters, Ltd., Natick, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ebeida, M. S., Patney, A., Mitchell, S. A., Davidson, A., Knupp, P. M., and Owens, J. D. 2011. Efficient maximal Poisson-disk sampling. In SIGGRAPH '11, 49:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ebeida, M. S., Mitchell, S. A., Patney, A., Davidson, A., and Owens, J. D. 2012. A simple algorithm for maximal Poisson-disk sampling in high dimensions. Computer Graphics Forum 31, 2, 785--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM SIGGRAPH 2011 papers 28, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Greene, D. F., and Johnson, E. A. 1989. A model of wind dispersal of winged or plumed seeds. Ecology 70, 2, 339--347.Google ScholarGoogle ScholarCross RefCross Ref
  14. Haase, P., Pugnaire, F. I., Clark, S., and Incoll, L. 1996. Spatial patterns in a two-tiered semi-arid shrubland in southeastern spain. Journal of Vegetation Science, 7, 527--534.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kalantari, N. K., and Sen, P. 2011. Efficient computation of blue noise point sets through importance sampling. Computer Graphics Forum (EGSR '11) 30, 4, 1215--1221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. In SIGGRAPH '06, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lagae, A., and Drettakis, G. 2011. Filtering solid Gabor noise. In SIGGRAPH '11, 51:1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lagae, A., and Dutré, P. 2006. An alternative for Wang tiles: colored edges versus colored corners. ACM Trans. Graph. 25, 4, 1442--1459. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 21, 1, 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lagae, A., Lefebvre, S., Drettakis, G., and Dutré, P. 2009. Procedural noise using sparse Gabor convolution. In SIGGRAPH '09, 54:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lau, D. L., Arce, G. R., and Gallagher, N. C. 1999. Digital halftoning by means of green-noise masks. 1575--1586.Google ScholarGoogle Scholar
  22. Lau, D., Ulichney, R., and Arce, G. 2003. Fundamental characteristics of halftone textures: blue-noise and green-noise. IEEE Signal Processing Magazine 20, 4, 28--38.Google ScholarGoogle ScholarCross RefCross Ref
  23. Li, H., and Mould, D. 2011. Structure-preserving stippling by priority-based error diffusion. In GI '11, 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Li, H., Wei, L.-Y., Sander, P., and Fu, C.-W. 2010. Anisotropic blue noise sampling. In SIGGRAPH Asia '10, 167:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lloyd, S. 1983. An optimization approach to relaxation labeling algorithms. Image and Vision Computing 1, 2.Google ScholarGoogle ScholarCross RefCross Ref
  26. Martinez, V. J., Paredes, S., Borgani, S., and Coles, P. 1995. Multiscaling properties of large-scale structure in the universe. Science 269, 5228, 1245--1247.Google ScholarGoogle Scholar
  27. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In SIGGRAPH '87, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ostling, A., Harte, J., and Green, J. 2000. Self-similarity and clustering in the spatial distribution of species. Science 290, 5492, 671.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. In SIGGRAPH '04, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ostromoukhov, V. 2001. A simple and efficient error-diffusion algorithm. In SIGGRAPH '01, 567--572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ostromoukhov, V. 2007. Sampling with polyominoes. In SIGGRAPH '07, 78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Öztireli, A. C., Alexa, M., and Gross, M. 2010. Spectral sampling of manifolds. In SIGGRAPH ASIA '10, 168:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pang, W.-M., Qu, Y., Wong, T.-T., Cohen-Or, D., and Heng, P.-A. 2008. Structure-aware halftoning. In SIGGRAPH '08. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Parker, K., Mitsa, T., and Ulichney, R. 1991. A new algorithm for manipulating the power spectrum of halftone patterns. In SPSE's 7th Int. Congress on Non-Impact Printing, 471--475.Google ScholarGoogle Scholar
  35. Pharr, M., and Humphreys, G. 2004. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In HPG '11, 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Schroeder, M. R. 1999. Computer Speech: Recognition, Compression, Synthesis. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Schua, K., Feger, K.-H., Wagner, S., Eisenhauer, D.-R., and Raben, G. 2009. Cause-Effect Relations with Regard to Functional and Morphological Humus Characteristics in Mixed Forest Stands. EGU General Assembly 2009 11 (Apr.), 226.Google ScholarGoogle Scholar
  39. Secord, A. 2002. Weighted Voronoi stippling. In NPAR '02, 37--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Shirley, P. 1991. Discrepancy as a quality measure for sample distributions. In Eurographics '91, 183--194.Google ScholarGoogle Scholar
  41. Turk, G. 1992. Re-tiling polygonal surfaces. In SIGGRAPH '92, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tzeng, S., and Wei, L.-Y. 2008. Parallel white noise generation on a GPU via cryptographic hash. In I3D '08: Proceedings of the 2008 symposium on Interactive 3D graphics and games, 79--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ulichney, R. 1987. Digital Halftoning. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. In SIGGRAPH '11, 50:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wei, L.-Y. 2010. Multi-class blue noise sampling. In SIGGRAPH '10, 79:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Yellott, J. I. J. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382--385.Google ScholarGoogle ScholarCross RefCross Ref
  47. Zhou, B., and Fang, X. 2003. Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation. In SIGGRAPH '03, 437--444. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Point sampling with general noise spectrum
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader