skip to main content
research-article

Fast automatic skinning transformations

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Skinning transformations are a popular way to articulate shapes and characters. However, traditional animation interfaces require all of the skinning transformations to be specified explicitly, typically using a control structure (a rig). We propose a system where the user specifies only a subset of the degrees of freedom and the rest are automatically inferred using nonlinear, rigidity energies. By utilizing a low-order model and reformulating our energy functions accordingly, our algorithm runs orders of magnitude faster than previous methods without compromising quality. In addition to the immediate boosts in performance for existing modeling and real time animation tools, our approach also opens the door to new modes of control: disconnected skeletons combined with shape-aware inverse kinematics. With automatically generated skinning weights, our method can also be used for fast variational shape modeling.

Skip Supplemental Material Section

Supplemental Material

tp174_12.mp4

References

  1. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5, 165:1--165:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Au, O. K.-C., Tai, C.-L., Liu, L., and Fu, H. 2006. Dual Laplacian editing for meshes. IEEE Trans. Vis. Comput. Graphi. 12, 3, 386--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Au, O. K.-C., Fu, H., Tai, C.-L., and Cohen-Or, D. 2007. Handle-aware isolines for scalable shape editing. ACM Trans. Graph. 26, 3, 83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26, 3, 72:1--72:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational harmonic maps for space deformation. ACM Trans. Graph. 28, 3, 34:1--34:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Blair, P. 1994. Cartoon Animation. Walter Foster Publishing, Inc., Irvine, CA, USA.Google ScholarGoogle Scholar
  8. Borosán, P., Howard, R., Zhang, S., and Nealen, A. 2010. Hybrid mesh editing. In Proc. EUROGRAPHICS, Short papers, 41--44.Google ScholarGoogle Scholar
  9. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. PriMo: Coupled prisms for intuitive surface modeling. In Proc. SGP, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26, 3, 339--347.Google ScholarGoogle ScholarCross RefCross Ref
  12. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4, 38:1--38:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Der, K. G., Sumner, R. W., and Popović, J. 2006. Inverse kinematics for reduced deformable models. ACM Trans. Graph. 25, 3, 1174--1179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Faure, F., Gilles, B., Bousquet, G., and Pai, D. K. 2011. Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30, 4, 73:1--73:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Forstmann, S., and Ohya, J. 2006. Fast skeletal animation by skinned arc-spline based deformation. In Proc. EUROGRAPHICS, Short papers.Google ScholarGoogle Scholar
  16. Forstmann, S., Ohya, J., Krohn-Grimberghe, A., and McDougall, R. 2007. Deformation styles for spline-based skeletal animation. In Proc. SCA, 141--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fröhlich, S., and Botsch, M. 2011. Example-driven deformations based on discrete shells. Comput. Graph. Forum 30, 8, 2246--2257.Google ScholarGoogle ScholarCross RefCross Ref
  18. Gilles, B., Bousquet, G., Faure, F., and Pai, D. 2011. Frame-based elastic models. ACM Trans. Graph. 30, 2, 15:1--15:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hildebrandt, K., Schulz, C., Tycowicz, C. V., and Polthier, K. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 5, 119:1--119:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3, 1126--1134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J. 2008. Non-rigid registration under isometric deformations. In Proc. SGP, 1449--1457. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3, 1134--1141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jacobson, A., and Sorkine, O. 2011. Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6, 165:1--165:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78:1--78:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71:1--71:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kavan, L., Collins, S., Zara, J., and O'Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4, 105:1--105:23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kavan, L., Collins, S., and O'Sullivan, C. 2009. Automatic linearization of nonlinear skinning. In Proc. I3D, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kavan, L., Sloan, P., and O'Sullivan, C. 2010. Fast and efficient skinning of animated meshes. Comput. Graph. Forum 29, 2, 327--336.Google ScholarGoogle ScholarCross RefCross Ref
  30. Landreneau, E., and Schaefer, S. 2010. Poisson-based weight reduction of animated meshes. Comput. Graph. Forum 29, 6, 1945--1954.Google ScholarGoogle ScholarCross RefCross Ref
  31. Langer, T., and Seidel, H.-P. 2008. Higher order barycentric coordinates. Comput. Graph. Forum 27, 2, 459--466.Google ScholarGoogle ScholarCross RefCross Ref
  32. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. ACM SIGGRAPH, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27, 3, 78:1--78:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. Comput. Graph. Forum 27, 5, 1495--1504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Manson, J., and Schaefer, S. 2011. Hierarchical deformation of locally rigid meshes. Comput. Graph. Forum 30, 8, 2387--2396.Google ScholarGoogle ScholarCross RefCross Ref
  36. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 37:1--37:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Merry, B., Marais, P., and Gain, J. 2006. Animation space: A truly linear framework for character animation. ACM Trans. Graph. 25, 4, 1400--1423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22, 3, 562--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Pekelny, Y., and Gotsman, C. 2008. Articulated object reconstruction and markerless motion capture from depth video. Comput. Graph. Forum 27, 2, 399--408.Google ScholarGoogle ScholarCross RefCross Ref
  40. Schaefer, S., McPhail, T., and Warren, J. 2006. Image deformation using moving least squares. ACM Trans. Graph. 25, 3, 533--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proc. ACM SIGGRAPH Symposium on High Performance Graphics, 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Proc. ACM SIGGRAPH, 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2007. Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph. 26, 3, 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. SGP, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. ACM Trans. Graph. 26, 3, 80:1--80:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: least-squares approximation techniques for skin animation. In Proc. SCA, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wang, R. Y., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression. ACM Trans. Graph. 26, 3, 73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wareham, R., and Lasenby, J. 2008. Bone Glow: An improved method for the assignment of weights for mesh deformation. Articulated Motion and Deformable Objects, 63--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Weber, O., Ben-Chen, M., and Gotsman, C. 2009. Complex barycentric coordinates with applications to planar shape deformation. Comput. Graph. Forum 28, 2, 587--597.Google ScholarGoogle ScholarCross RefCross Ref
  51. Yang, X., Somasekharan, A., and Zhang, J. J. 2006. Curve skeleton skinning for human and creature characters. Comput. Animat. Virtual Worlds 17, 3--4, 281--292. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast automatic skinning transformations
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader