skip to main content
research-article

Edge-guided resolution enhancement in projectors via optical pixel sharing

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Digital projection technology has improved significantly in recent years. But, the relationship of cost with respect to available resolution in projectors is still super-linear. In this paper, we present a method that uses projector light modulator panels (e.g. LCD or DMD panels) of resolution n X n to create a perceptually close match to a target higher resolution cn X cn image, where c is a small integer greater than 1. This is achieved by enhancing the resolution using smaller pixels at specific regions of interest like edges.

A target high resolution image (cn X cn) is first decomposed into (a) a high resolution (cn X cn) but sparse edge image, and (b) a complementary lower resolution (n X n) non-edge image. These images are then projected in a time sequential manner at a high frame rate to create an edge-enhanced image -- an image where the pixel density is not uniform but changes spatially. In 3D ready projectors with readily available refresh rate of 120Hz, such a temporal multiplexing is imperceptible to the user and the edge-enhanced image is perceptually almost identical to the target high resolution image.

To create the higher resolution edge image, we introduce the concept of optical pixel sharing. This reduces the projected pixel size by a factor of 1/c2 while increasing the pixel density by c2 at the edges enabling true higher resolution edges. Due to the sparsity of the edge pixels in an image we are able to choose a sufficiently large subset of these to be displayed at the higher resolution using perceptual parameters. We present a statistical analysis quantifying the expected number of pixels that will be reproduced at the higher resolution and verify it for different types of images.

References

  1. Agrawal, A., and Raskar, R. 2007. Resolving objects at higher resolution using a single motion blurred image. IEEE CVPR.Google ScholarGoogle Scholar
  2. Aliaga, D., Yeung, Y. H., Law, A. J., Sajadi, B., and Majumder, A. 2011. Fast high-resolution appearance editing using superimposed projections. ACM TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Allen, W., and Ulichney, R. 2005. Wobulation: Doubling the addressed resolution of projection displays. SID.Google ScholarGoogle Scholar
  4. Babu, R. S., and Murthy, K. E. S. 2011. A survey on the methods of super-resolution image reconstruction. IJCV 15, 2.Google ScholarGoogle Scholar
  5. Baker, S., and Nayar, S. K. 1999. A theory of single-viewpoint catadioptric image formation. IJCV 35, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bala, K., Walter, B., and Greenberg, D. P. 2003. Combining edges and points for interactive high-quality rendering. ACM Transactions of Graphics (Siggraph). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bhasker, E., Juang, R., and Majumder, A. 2007. Registration techniques for using imperfect and partially calibrated devices in planar multi-projector displays. IEEE TVCG 13, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chen, H., Sukthankar, R., Wallace, G., and Li, K. 2002. Scalable alignment of large-format multi-projector displays using camera homography trees. IEEE Vis. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cole, F., and Finkelstein, A. 2010. Two fast methods for high-quality line visibility. IEEE TVCG 16, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., and Singh, M. 2009. How well do line drawings depict shape? ACM TOG 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C.Tomasi, and Manduchi, R. 1998. Bilateral filtering for gray and color images. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Damera-Venkata, N., and Chang, N. L. 2009. Display supersampling. ACM TOG 28, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Debevec, P. E., and Malik, J. 1997. Recovering high dynamic range radiance maps from photographs. ACM Siggraph. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. DeCarlo, D., Finkelstein, A., and Rusinkiewicz, S. 2004. Interactive rendering of suggestive contours with temporal coherence. NPAR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dijk, J., van Grinkel, M., van Asselt, R. J., van Vliet, L., and Verbeek, P. W. 2003. A new sharpness measure based on gaussian lines and edges. CAIP.Google ScholarGoogle Scholar
  16. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACM TOG 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fattal, R. 2007. Image upsampling via imposed edges statistics. ACM TOG 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Goldstein, E. B. 2001. Sensation and Perception. Wadsworth Publishing Company.Google ScholarGoogle Scholar
  19. Hirsch, M., Lanman, D., Holtzman, H., and Raskar, R. 2009. BiDi screen: A thin, depth-sensing LCD for 3D interaction using lights fields. ACM TOG 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jaynes, C., and Ramakrishnan, D. 2003. Super-resolution composition in multi-projector displays. PROCAMS.Google ScholarGoogle Scholar
  21. Kopf, J., Cohen, M. F., Lischinski, D., and Uyttendaele, M. 2007. Joint bilateral upsampling. ACM TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kuthirummal, S., and Nayar, S. K. 2006. Multiview radial catadioptric imaging for scene capture. ACM TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3d displays using low-rank light field factorization. ACM TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: Dynamic light field display using multi-layer LCDs. ACM TOG 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lazarev, A., and Palto, S. 2009. Materials for light efficient LCD. Society for Information Display (SID).Google ScholarGoogle Scholar
  26. Levin, A., Fergus, R., Durand, F., and Freeman, B. 2007. Image and depth from a conventional camera with a coded aperture. ACM TOG 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Levin, A., Sand, P., Cho, T. S., Durand, F., and Freeman, W. T. 2008. Motion-invariant photography. ACM TOG 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Liang, C., Lin, T. H., Wong, B. Y., Liu, C., and Chen, H. H. 2008. Programmable aperture photography:multiplexed light field acquisition. ACM TOG 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lin, W. S., Gai, Y. L., and Kassim, A. A. 2006. Perceptual impact of edge sharpness in images. IEEE Proceedings on Vision, Image and Signal Processing.Google ScholarGoogle Scholar
  30. Majumder, A., and Irani, S. 2007. Perception based contrast enhancement of images. ACM Transactions on Applied Perception 4, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Majumder, A., and Stevens, R. 2005. Perceptual photometric seamlessness in tiled projection-based displays. ACM TOG 24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Majumder, A., Brown, R., and Ghoroury, H. E. 2010. Display gamut reshaping for color emulation and balancing. IEEE CVPR Workshop on Projector Camera Systems (PROCAMS).Google ScholarGoogle Scholar
  33. Majumder, A. 2005. Is spatial super-resolution possible with multiple overlapping projectors? ICASSP.Google ScholarGoogle Scholar
  34. Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM TOG 25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ran, X., and Farvardin, N. 1995. A perceptually motivated three component image model: Part i. IEEE TIP 4, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Raskar, R., and Cohen, M. F. 1999. Image precision silhouette edges. ACM I3D. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Raskar, R., h Tan, K., Feris, R., Yu, J., and Turk, M. 2004. Non-photorealistic camera: Depth edge detection and stylized rendering using multi-flash imaging. ACM TOG 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Raskar, R., Agrawal, A., and Tumblin, J. 2006. Coded exposure photography: Motion deblurring using fluttered shutter. ACM TOG 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stupp, E. H., and Brennesholtz, M. S. 1999. Projection Displays. Wiley.Google ScholarGoogle Scholar
  40. Sun, T., and Kelly, K. 2009. Compressive sensing hyperspectral imager. Computational Optical Sensing and Imaging, Optical Society of America.Google ScholarGoogle Scholar
  41. Valois, R. L. D., and Valois, K. K. D. 1990. Spatial Vision. Oxford University Press.Google ScholarGoogle Scholar
  42. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., and Tumblin, J. 2007. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM TOG 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Veeraraghavan, A., Reddy, D., and Raskar, R. 2010. Coded strobing photography: Compressive sensing of high-speed periodic events. IEEE PAMI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Wakin, M., Laska, J., Duarte, M., Baron, D., Sarvotham, S., Takhar, D., Kelly, K., and Baraniuk, R. 2006. An architecture for compressive imaging. ICIP.Google ScholarGoogle Scholar
  45. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM TOG 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wilburn, B., Joshi, N., Vaish, V., Talvala, E. V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High performance imaging using large camera arrays. ACM TOG 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Winkler, S. 2001. Visual fidelity and perceived quality: towards comprehensive metrics. Proceedings of SPIE 4299.Google ScholarGoogle Scholar

Index Terms

  1. Edge-guided resolution enhancement in projectors via optical pixel sharing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader