skip to main content
research-article

Tailored displays to compensate for visual aberrations

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We introduce tailored displays that enhance visual acuity by decomposing virtual objects and placing the resulting anisotropic pieces into the subject's focal range. The goal is to free the viewer from needing wearable optical corrections when looking at displays. Our tailoring process uses aberration and scattering maps to account for refractive errors and cataracts. It splits an object's light field into multiple instances that are each in-focus for a given eye sub-aperture. Their integration onto the retina leads to a quality improvement of perceived images when observing the display with naked eyes. The use of multiple depths to render each point of focus on the retina creates multi-focus, multi-depth displays. User evaluations and validation with modified camera optics are performed. We propose tailored displays for daily tasks where using eyeglasses are unfeasible or inconvenient (e.g., on head-mounted displays, e-readers, as well as for games); when a multi-focus function is required but undoable (e.g., driving for farsighted individuals, checking a portable device while doing physical activities); or for correcting the visual distortions produced by high-order aberrations that eyeglasses are not able to.

Skip Supplemental Material Section

Supplemental Material

References

  1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. In SIGGRAPH 2004, I804--813. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alonso Jr., M., Barreto, A., and Adjouadi, M. 2007. Development and evaluation of a custom display compensation method for computer users based on individual visual characteristics. In 16th Int. Conf. Comp.Google ScholarGoogle Scholar
  3. Barsky, B. A. 2004. Vision-realistic rendering. In APGV, 73--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Camp, J., Maguire, L., and Robb, R. 1990. An efficient ray tracing algorithm for modeling visual performance from corneal topography. In Proc. Vis. in Bio. Comp., 278--285.Google ScholarGoogle Scholar
  5. Campbell, C. 2010. Relative importance of sources of chromatic refractive error in the human eye. J. Opt. Soc. Am. A 27(4).Google ScholarGoogle ScholarCross RefCross Ref
  6. Charman, W., and Heron, G. 2000. On the linearity of accommodation dynamics. Vision Research 40(15), 2057--2066.Google ScholarGoogle ScholarCross RefCross Ref
  7. Damera-Venkata, N., and Chang, N. L. 2009. Display supersampling. ACM TOG 28, 9:1--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Deering, M. F. 2005. A photon accurate model of the human eye. In SIGGRAPH 2005, vol. 24(3), 649--658. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Didyk, P., Eisemann, E., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2010. Apparent display resolution enhancement for moving images. In SIGGRAPH 2010, 113:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dodgson, N. 2009. Analysis of the viewing zone of multi-view autostereoscopic displays. In SPIE SD&A, vol. 4660, 254--265.Google ScholarGoogle ScholarCross RefCross Ref
  11. Donnelly, W., Pesudovs, K., Marsack, J., Sarver, E., and Applegate, R. 2004. Quantifying scatter in Shack-Hartmann images to evaluate nuclear cataract. J Refract Surg 20(5), S515--S522.Google ScholarGoogle ScholarCross RefCross Ref
  12. Douali, M. G., and Silver, J. D. 2004. Self-optimised vision correction with adaptive spectacle lenses in developing countries. Ophthal Physiol Opt 24.Google ScholarGoogle Scholar
  13. EDPRG. 2004. Prevalence of cataract and pseudophakia/aphakia among adults in the united states. Arch Ophthalmol 122.Google ScholarGoogle Scholar
  14. Goldring, E., Cain, J., Larson, K., Price, L., Smith, L., Rayej, S., and Cavallerano, J. 2006. Enhanced visual experiences and seeing hardware for reduced vision. Optom. 77(2).Google ScholarGoogle Scholar
  15. Hoffman, D. M., Girshick, A. R., Akeley, K., and Banks, M. S. 2005. Vergence--accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 5, 10, 834--862.Google ScholarGoogle Scholar
  16. Huang, F.-C., and Barsk, B. A. 2011. A framework for aberration compensated displays. Tech. Rep. UCB/EECS-2011-16.Google ScholarGoogle Scholar
  17. Isaksen, A., McMillan, L., and Gortler, S. J. 2000. Dynamically reparameterized light fields. In SIGGRAPH 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Isono, H., Yasuda, M., and Sasazawa, H. 1993. Autostereoscopic 3-D display using LCD-generated parallax barrier. Electr. Comm. Japan 76(7), 77--84.Google ScholarGoogle Scholar
  19. Ives, F. E., 1903. Parallax stereogram & process of making same. US Patent 725567.Google ScholarGoogle Scholar
  20. Jaynes, C., and Ramakrishnan, D. 2003. Super-resolution composition in multi-projector displays. In IEEE ProCams.Google ScholarGoogle Scholar
  21. Jeong, T. M., Ko, D.-K., and Lee, J. 2005. Generalized ray-transfer matrix for an optical element having an arbitrary wave-front aberration. Opt. Lett. 30(22), 3009--11.Google ScholarGoogle ScholarCross RefCross Ref
  22. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers. ACM TOG 29(6), 163:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., and Bolas, M. 2004. Synthetic aperture confocal imaging. ACM TOG 23, 825--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Levoy, M., Zhang, Z., and McDowall, I. 2009. Recording and controlling the 4D light field in a microscope using microlens arrays. J Microsc 235(2), 144--162.Google ScholarGoogle ScholarCross RefCross Ref
  25. Liang, J., Grimm, B., Goelz, S., and Bille, J. 1994. Objective measurement of wave aberrations of the human eye with a Hartmann-Shack sensor. JOSA A 11(7), 1949--1957.Google ScholarGoogle ScholarCross RefCross Ref
  26. Liang, J., Williams, D. R., and Miller, D. T. 1997. Super-normal vision & high-resolution retinal imaging through adaptive optics. JOSA A 14(11), 2884--2892.Google ScholarGoogle ScholarCross RefCross Ref
  27. Lippmann, G. 1908. épreuves réversibles donnant la sensation du relief. J Phys 7, 821--825.Google ScholarGoogle Scholar
  28. Liu, S., and Hua, H. 2009. Time-multiplexed dual-focal plane head-mounted display with a liquid lens. Opt. Lett. 34(11), 1642.Google ScholarGoogle ScholarCross RefCross Ref
  29. Machado, G. M., Oliveira, M. M., and Fernandes, L. A. F. 2009. A physiologically-based model for simulation of color vision deficiency. IEEE Trans. Vis. Comp. Graph. 15(6). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Maddox, E. E. 1886. Investigations in the relation between convergence and accommodation of the eyes. J Anat Physiol 20(3).Google ScholarGoogle Scholar
  31. ming Dai, G., Campbell, C. E., Chen, L., Zhao, H., and Chernyak, D. 2009. Wavefront propagation from one plane to another with the use of zernike polynomials and taylor mono-mials. Appl Opt 48(3), 477--488.Google ScholarGoogle ScholarCross RefCross Ref
  32. Morgan, I. G., Ohno-Matsui, K., and Saw, S.-M. 2012. Myopia. The Lancet 379: 1739--48.Google ScholarGoogle ScholarCross RefCross Ref
  33. Ng, R., and Hanrahan, P. 2006. Digital correction of lens aberrations in light field photography. In SPIE IODC, vol. 6342.Google ScholarGoogle Scholar
  34. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a hand-held plenoptic camera. Tech. Rep. CTSR 2005--02.Google ScholarGoogle Scholar
  35. Ng, R. 2005. Fourier slice photography. ACM TOG 24, 735--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Pamplona, V. F., Oliveira, M. M., and Baranoski, G. 2009. Photorealistic models for pupil light reflex and iridal pattern deformation. ACM TOG 28(4), 106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Pamplona, V. F., Mohan, A., Oliveira, M. M., and Raskar, R. 2010. NETRA: interactive display for estimating refractive errors and focal range. In SIGGRAPH 2010, 77:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pamplona, V. F., Passos, E. B., Zizka, J., Oliveira, M. M., Lawson, E., Clua, E., and Raskar, R. 2011. CATRA: interactive measuring and modeling of cataracts. In SIGGRAPH 2011, 47:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Porterfield, W. 1759. A Treatise on the Eye: the manner & phenomena of vision.Google ScholarGoogle Scholar
  40. Rolland, J. P., Krueger, M. W., and Goon, A. 2000. Multi-focal planes head-mounted displays. Appl Opt 39(19), 3209--15.Google ScholarGoogle ScholarCross RefCross Ref
  41. Rozema, J. J., Dyck, D. E. V., and Tassignon, M.-J. 2005. Clinical comparison of 6 aberrometers. part 1: Technical specifications. JCRS 31, 6, 1114--1127.Google ScholarGoogle Scholar
  42. Rucker, F. J., and Kruger, P. B. 2006. Cone contributions to signals for accommodation and the relationship to refractive error. Vision Research 46, 3079--3089.Google ScholarGoogle ScholarCross RefCross Ref
  43. Schaeffel, F. 2006. Myopia: The importance of seeing fine detail. Curr. Biol. 16(7), R257--R259.Google ScholarGoogle ScholarCross RefCross Ref
  44. Schwiegerling, J. 2000. Theoretical limits to visual performance. Surv Ophthalmol 45(2), 139--146.Google ScholarGoogle ScholarCross RefCross Ref
  45. Schwiegerling, J. 2004. Field guide to visual and ophthalmic optics. SPIE.Google ScholarGoogle Scholar
  46. Sugiura, N., and Morita, S. 1993. Variable-focus liquid-filled optical lens. Appl Opt. 32(22).Google ScholarGoogle Scholar
  47. Thibos, L., Qi, X., and Miller, D. T. 1999. Vision through a liquid-crystal spatial light modulator. In Adaptive Optics for Industry and Medicine.Google ScholarGoogle Scholar
  48. Vaish, V., Wilburn, B., Joshi, N., and Levoy, M. 2004. Using plane + parallax for calibrating dense camera arrays. In IEEE CVPR, 2--9.Google ScholarGoogle Scholar
  49. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM TOG 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. WHO, 2005. State of the world's sight. vision 2020: the right to sight 1999--2005.Google ScholarGoogle Scholar
  51. Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J.-P., Capasso, F., and Gaburro, Z. 2011. Light propagation with phase discontinuities. Science 334 (6054), 333--337.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Tailored displays to compensate for visual aberrations
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader