skip to main content
research-article

Panorama weaving: fast and flexible seam processing

Authors Info & Claims
Published:01 July 2012Publication History
Skip Abstract Section

Abstract

A fundamental step in stitching several pictures to form a larger mosaic is the computation of boundary seams that minimize the visual artifacts in the transition between images. Current seam computation algorithms use optimization methods that may be slow, sequential, memory intensive, and prone to finding suboptimal solutions related to local minima of the chosen energy function. Moreover, even when these techniques perform well, their solution may not be perceptually ideal (or even good). Such an inflexible approach does not allow the possibility of user-based improvement. This paper introduces the Panorama Weaving technique for seam creation and editing in an image mosaic. First, Panorama Weaving provides a procedure to create boundaries for panoramas that is fast, has low memory requirements and is easy to parallelize. This technique often produces seams with lower energy than the competing global technique. Second, it provides the first interactive technique for the exploration of the seam solution space. This powerful editing capability allows the user to automatically extract energy minimizing seams given a sparse set of constraints. With a variety of empirical results, we show how Panorama Weaving allows the computation and editing of a wide range of digital panoramas including unstructured configurations.

Skip Supplemental Material Section

Supplemental Material

tp179_12.mp4

References

  1. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S. M., Colburn, A., Curless, B., Salesin, D., and Cohen, M. F. 2004. Interactive digital photomontage. ACM Trans. Graph 23, 3, 294--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agarwala, A., Zheng, K. C., Pal, C., Agrawala, M., Cohen, M. F., Curless, B., Salesin, D., and Szeliski, R. 2005. Panoramic video textures. ACM Trans. Graph 24, 3, 821--827. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Agarwala, A., Agrawala, M., Cohen, M. F., Salesin, D., and Szeliski, R. 2006. Photographing long scenes with multi-viewpoint panoramas. ACM Trans. Graph 25, 3, 853--861. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Agarwala, A. 2007. Efficient gradient-domain compositing using quadtrees. ACM Trans. Graph 26, 3, 94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Boykov, Y. Y., and Jolly, M. P. 2001. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In ICCV, I: 105--112.Google ScholarGoogle Scholar
  6. Boykov, Y., and Kolmogorov, V. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell 26, 9, 1124--1137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Boykov, Y. Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 11 (Nov.), 1222--1239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chandran, S. L., Francis, M., and Sivadasan, N. 2006. Geometric representations of graphs in low dimension.Google ScholarGoogle Scholar
  9. Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. ACM Trans. Graph 22, 3, 287--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms. MIT Press, Cambridge. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Correa, C. D., and Ma, K.-L. 2010. Dynamic video narratives. ACM Trans. Graph 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Davis, J. E. 1998. Mosaics of scenes with moving objects. In CVPR, 354--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Delong, A., and Boykov, Y. 2008. A scalable graph-cut algorithm for N-D grids. In CVPR, IEEE Computer Society.Google ScholarGoogle Scholar
  14. Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1, 269--271.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Efros, A. A., and Freeman, W. T. 2001. Image quilting for texture synthesis and transfer. In SIGGRAPH, 341--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Freedman, D., and Zhang, T. 2005. Interactive graph cut based segmentation with shape priors. In CVPR, I: 755--762. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gracias, N. R. E., Mahoor, M. H., Negahdaripour, S., and Gleason, A. C. R. 2009. Fast image blending using watersheds and graph cuts. Image and Vision Computing 27, 5 (Apr.), 597--607. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hassin, R. 1981. Maximum flow in (s, t)-planar networks. Inform. Proc. Lett. 13, 107.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kazhdan, M. M., and Hoppe, H. 2008. Streaming multigrid for gradient-domain operations on large images. ACM Trans. Graph 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kazhdan, M. M., Surendran, D., and Hoppe, H. 2010. Distributed gradient-domain processing of planar and spherical images. ACM Trans. Graph 29, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kolmogorov, V., and Zabih, R. 2004. What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell 26, 2, 147--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kopf, J., Uyttendaele, M., Deussen, O., and Cohen, M. F. 2007. Capturing and viewing gigapixel images. ACM Trans. Graph 26, 3, 93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. 2003. Graphcut textures: Image and video synthesis using graph cuts. ACM Trans. Graph 22, 3 (July), 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Levin, A., Zomet, A., Peleg, S., and Weiss, Y. 2004. Seamless image stitching in the gradient domain. In ECCV, Vol IV: 377--389.Google ScholarGoogle Scholar
  25. Li, Y., Sun, J., Tang, C.-K., and Shum, H.-Y. 2004. Lazy snapping. ACM Trans. Graph 23, 3, 303--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Liu, J., and Sun, J. 2010. Parallel graph-cuts by adaptive bottom-up merging. In CVPR, IEEE, 2181--2188.Google ScholarGoogle Scholar
  27. Lombaert, H., Sun, Y. Y., Grady, L., and Xu, C. Y. 2005. A multilevel banded graph cuts method for fast image segmentation. In ICCV, I: 259--265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Milgram, D. L. 1975. Computer methods for creating photomosaics. IEEE Trans. Computer 23, 1113--1119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Milgram, D. L. 1977. Adaptive techniques for photomosaicking. IEEE Trans. Computer 26, 1175--1180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nagahashi, T., Fujiyoshi, H., and Kanade, T. 2007. Image segmentation using iterated graph cuts based on multi-scale smoothing. In ACCV, II: 806--816. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Peleg, S., Rousso, B., Acha, A. R., and Zomet, A. 2000. Mosaicing on adaptive manifolds. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 10 (Oct.), 1144--1154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Trans. Graph 22, 3, 313--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. PTgui, 2012. http://www.ptgui.com.Google ScholarGoogle Scholar
  34. Roberts, F. 1969. On the boxicity and cubicity of a graph. Recent Progress in Combinatorics.Google ScholarGoogle Scholar
  35. Rosgen, B., and Stewart, L. 2007. Complexity results on graphs with few cliques. Discrete Mathematics & Theoretical Computer Science 9, 1.Google ScholarGoogle Scholar
  36. Rother, C., Kolmogorov, V., and Blake, A. 2004. Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph 23, 3, 309--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Shum, H. Y., and Szeliski, R. S. 1998. Construction and refinement of panoramic mosaics with global and local alignment. In ICCV, 953--956. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Szeliski, R. S. 1996. Video mosaics for virtual environments. IEEE Computer Graphics and Applications 16, 2 (Mar.), 22--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Szeliski, R. 2006. Image alignment and stitching: A tutorial. Foundations and Trends in Computer Graphics and Vision 2, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Uyttendaele, M. T., Eden, A., and Szeliski, R. S. 2001. Eliminating ghosting and exposure artifacts in image mosaics. II:509--516.Google ScholarGoogle Scholar
  41. Vineet, V., and Narayanan, P. J. 2008. CUDA cuts: Fast graph cuts on the GPU. In Computer Vision on GPU, 1--8.Google ScholarGoogle Scholar
  42. Wood, D. N., Finkelstein, A., Hughes, J. F., Thayer, C. E., and Salesin, D. 1997. Multiperspective panoramas for cel animation. In SIGGRAPH, 243--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Xu, D., Chen, Y., Xiong, Y., Qiao, C., and He, X. 2006. On the complexity of/and algorithms for finding shortest path with a disjoint counterpart. IEEE/ACM Trans. on Networking 14, 1, 147--158. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Panorama weaving: fast and flexible seam processing

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 31, Issue 4
            July 2012
            935 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2185520
            Issue’s Table of Contents

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 July 2012
            Published in tog Volume 31, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader