skip to main content
research-article

Robust modeling of constant mean curvature surfaces

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present a new method for modeling discrete constant mean curvature (CMC) surfaces, which arise frequently in nature and are highly demanded in architecture and other engineering applications. Our method is based on a novel use of the CVT (centroidal Voronoi tessellation) optimization framework. We devise a CVT-CMC energy function defined as a combination of an extended CVT energy and a volume functional. We show that minimizing the CVT-CMC energy is asymptotically equivalent to minimizing mesh surface area with a fixed volume, thus defining a discrete CMC surface. The CVT term in the energy function ensures high mesh quality throughout the evolution of a CMC surface in an interactive design process for form finding. Our method is capable of modeling CMC surfaces with fixed or free boundaries and is robust with respect to input mesh quality and topology changes. Experiments show that the new method generates discrete CMC surfaces of improved mesh quality over existing methods.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bobenko, A. I., and Springborn, B. A. 2007. A discrete Laplace-Beltrami operator for simplicial surfaces. Discrete & Computational Geometry 38, 4, 740--756. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Brakke, K. 1992. The Surface Evolver. Experimental Mathematics 1, 2, 141--165.Google ScholarGoogle ScholarCross RefCross Ref
  3. Brakke, K., 2012. The Surface Evolver, version 2.30. http://www.susqu.edu/brakke/evolver/evolver.html, May.Google ScholarGoogle Scholar
  4. Brew, J., and Lewis, W. 2003. Computational form-finding of tension membrane structures -- Non-finite element approaches: Part 1. Use of cubic splines in finding minimal surface membranes. International journal for numerical methods in engineering 56, 5, 651--668.Google ScholarGoogle Scholar
  5. Brew, J., and Lewis, W. 2003. Computational form-finding of tension membrane structures -- Non-finite element approaches: Part 2. Triangular mesh discretization and control of mesh distortion in modelling minimal surface membranes. International Journal for Numerical Methods in Engineering 56, 5, 669--684.Google ScholarGoogle ScholarCross RefCross Ref
  6. Chopp, D. 1993. Computing minimal surfaces via level set curvature flow. Journal of Computational Physics 106, 77--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review 41, 4, 637--676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Du, Q., Gunzburger, M., and Ju, L. 2003. Constrained centroidal Voronoi tessellations for surfaces. SIAM Journal on Scientific Computing 24, 5, 1488--1506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Du, Q., Gunzburger, M., and Ju, L. 2010. Advances in studies and applications of centroidal Voronoi tessellations. Numer. Math. Theor. Meth. Appl. 3, 119--142.Google ScholarGoogle ScholarCross RefCross Ref
  10. Dyer, R., Zhang, H., and Möller, T. 2007. Delaunay mesh construction. In Proceedings of the fifth Eurographics Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, 273--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dziuk, G., and Hutchinson, J. E. 2006. Finite element approximations to surfaces of prescribed variable mean curvature. Numerische Mathematik 102, 611--648. 10.1007/s00211-005-0649-7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gersho, A. 1979. Asymptotically optimal block quantization. IEEE Transactions on Information Theory 25, 4, 373--380. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Goldstein, R., Moffatt, H., Pesci, A., and Ricca, R. 2010. Soap-film Möbius strip changes topology with a twist singularity. Proceedings of the National Academy of Sciences 107, 51, 21979.Google ScholarGoogle ScholarCross RefCross Ref
  14. Gruber, P. 2001. Optimal configurations of finite sets in Riemannian 2-manifolds. Geometriae Dedicata 84, 271--320. 10.1023/A:1010358407868.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hadzhilazova, M., Mladenov, I., and Oprea, J. 2007. Unduloids and their geometry. Archivum Mathematicum 43, 5, 417--429.Google ScholarGoogle Scholar
  16. Kapouleas, N. 1990. Complete constant mean curvature surfaces in Euclidean three-space. The Annals of Mathematics 131, 2, 239--330.Google ScholarGoogle ScholarCross RefCross Ref
  17. Liu, D., and Nocedal, J. 1989. On the limited memory bfgs method for large scale optimization. Mathematical programming 45, 1, 503--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., and Yang, C. 2009. On centroidal Voronoi tessellation---energy smoothness and fast computation. ACM Trans. Graph. 28, 4, 1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2003. Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, H.-C. Hege and K. Polthier, Eds. Springer-Verlag, Heidelberg, 35--57.Google ScholarGoogle Scholar
  20. Oberknapp, B., and Polthier, K. 1997. An algorithm for discrete constant mean curvature surfaces. In Visualization and Mathematics, H.-C. Hege and K. Polthier, Eds. Springer Verlag, Heidelberg, 141--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Osserman, R. 2002. A survey of minimal surfaces. Dover Pubns.Google ScholarGoogle Scholar
  22. Pardalos, P., and Romeijn, H. 2002. Handbook of global optimization. Volume 2. Kluwer.Google ScholarGoogle Scholar
  23. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1, 15--36.Google ScholarGoogle Scholar
  24. Polthier, K., and Rossman, W. 2002. Discrete constant mean curvature surfaces and their index. J. reine angew. Math., 549, 47--77.Google ScholarGoogle Scholar
  25. Smith, J. 2003. Three Applications of Optimization in Computer Graphics. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Taylor, J. E. 1976. The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. The Annals of Mathematics 103, 3, 489--539.Google ScholarGoogle ScholarCross RefCross Ref
  27. Xu, G., and Zhang, Q. 2008. A general framework for surface modeling using geometric partial differential equations. Computer Aided Geometric Design 25, 3, 181--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Xu, G., Pan, Q., and Bajaj, C. 2006. Discrete surface modelling using partial differential equations. Computer Aided Geometric Design 23, 2, 125--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yan, D., Lévy, B., Liu, Y., Sun, F., and Wang, W. 2009. Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. In Computer graphics forum, vol. 28, Wiley Online Library, 1445--1454. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yan, D., Wang, W., Lévy, B., and Liu, Y. 2010. Efficient computation of 3D clipped Voronoi diagram. Advances in Geometric Modeling and Processing, 269--282. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Robust modeling of constant mean curvature surfaces

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader