skip to main content
research-article

Guided exploration of physically valid shapes for furniture design

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Geometric modeling and the physical validity of shapes are traditionally considered independently. This makes creating aesthetically pleasing yet physically valid models challenging. We propose an interactive design framework for efficient and intuitive exploration of geometrically and physically valid shapes. During any geometric editing operation, the proposed system continuously visualizes the valid range of the parameter being edited. When one or more constraints are violated after an operation, the system generates multiple suggestions involving both discrete and continuous changes to restore validity. Each suggestion also comes with an editing mode that simultaneously adjusts multiple parameters in a coordinated way to maintain validity. Thus, while the user focuses on the aesthetic aspects of the design, our computational design framework helps to achieve physical realizability by providing active guidance to the user. We demonstrate our framework on plank-based furniture design with nail-joint and frictional constraints. We use our system to design a range of examples, conduct a user study, and also fabricate a physical prototype to test the validity and usefulness of the system.

Skip Supplemental Material Section

Supplemental Material

tp184_12.mp4
a86-umetani.mp4

References

  1. Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM TOG (SIGG.) 29, 60:1--60:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In ACM SIGGRAPH, 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bergman, R. 2010. Wood Handbook -- Wood as an Engineering Material. Forest Products Laboratory.Google ScholarGoogle Scholar
  4. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM TOG (SIGG.) 29, 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chaudhuri, S., and Koltun, V. 2010. Data-driven suggestions for creativity support in 3D modeling. ACM TOG (SIGG. Asia) 29, 183:1--183:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3d modeling. ACM TOG (SIGG.) 30, 35:1--35:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chenney, S., and Forsyth, D. A. 2000. Sampling plausible solutions to multi-body constraint problems. In ACM SIGGRAPH, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N. J., Pottmann, H., and Pauly, M. 2010. Paneling architectural freeform surfaces. ACM TOG (SIGG.) 29, 4 (July), 45:1--45:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Erleben, K., Sporring, J., Henriksen, K., and Dohlmann, H. 2005. Physics Based Animation (Graphics Series). Charles River Media, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. In ACM TOG (SIGG.), 652--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iWIRES: an analyze-and-edit approach to shape manipulation. ACM TOG (SIGG.) 28, 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Geradin, M., and Cardona, A. 2001. Flexible Multibody Dynamics: A Finite Element Approach, 1 ed. Wiley, 2.Google ScholarGoogle Scholar
  13. Igarashi, T., and Hughes, J. F. 2001. A suggestive interface for 3D drawing. In UIST, 173--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K. 2008. Staggered projections for frictional contact in multibody systems. ACM TOG (SIGG. Asia) 27, 5, 164:1--164:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kerr, W. B., and Pellacini, F. 2010. Toward evaluating material design interface paradigms for novice users. In ACM TOG (SIGG.), 35:1--35:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Klarbring, A. 1990. Examples of non-uniqueness and non-existence of solutions to quasistatic contact problems with friction. Archive of Applied Mechanics 60, 529--541.Google ScholarGoogle Scholar
  17. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM TOG (SIGG.) 30, 87:1--87:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mitra, N. J., and Pauly, M. 2009. Shadow art. In ACM TOG (SIGG. Asia), 156:1--156:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3D shapes. In ACM TOG (SIGG.), 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Paczkowski, P., Kim, M. H., Morvan, Y., Dorsey, J., Rushmeier, H., and O'Sullivan, C. 2011. Insitu: sketching architectural designs in context. SIGG. Asia 30, 182:1--182:10. Google ScholarGoogle Scholar
  21. Parker, H., and Ambrose, J. 1997. Simplified Design of Wood Structures. Wiley.Google ScholarGoogle Scholar
  22. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In ACM SIGGRAPH, 209--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shapira, L., Shamir, A., and Cohen-Or, D. 2009. Image appearance exploration by model-based navigation. CGF (EUROGRAPHICS), 629--638.Google ScholarGoogle Scholar
  24. Singh, M., and Schaefer, S. 2010. Triangle surfaces with discrete equivalence classes. ACM TOG (SIGG.) 29, 46:1--46:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Smith, J., Hodgins, J. K., Oppenheim, I., and Witkin, A. 2002. Creating models of truss structures with optimization. ACM SIGGRAPH 21, 1, 295--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stewart, D., and Trinkle, J. 2000. An implicit time-stepping scheme for rigid body dynamics with coulomb friction. In IEEE ICRA, vol. 1, 162--169.Google ScholarGoogle Scholar
  27. Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and Koltun, V. 2009. Exploratory modeling with collaborative design spaces. ACM TOG (SIGG. Asia) 28, 167:1--167:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Twigg, C. D., and James, D. L. 2008. Backwards steps in rigid body simulation. ACM TOG (SIGG.), 25:1--25:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. In ACM TOG (SIGG.), 90:1--90:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. van Keulen, F., Haftka, R., and Kim, N. 2005. Review of options for structural design sensitivity analysis. part 1: Linear systems. Proc. CMAME 194, 30-33, 3213--3243.Google ScholarGoogle ScholarCross RefCross Ref
  31. Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM TOG (SIGG. Asia) 28, 5, 112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yang, Y.-L., Yang, Y.-J., Pottmann, H., and Mitra, N. J. 2011. Shape space exploration of constrained meshes. ACM TOG (SIGG. Asia) 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. J. 2011. Make it home: automatic optimization of furniture arrangement. ACM TOG (SIGG.) 30, 86:1--86:12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Guided exploration of physically valid shapes for furniture design
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader