skip to main content
research-article

Position-correcting tools for 2D digital fabrication

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Many kinds of digital fabrication are accomplished by precisely moving a tool along a digitally-specified path. This precise motion is typically accomplished fully automatically using a computer-controlled multi-axis stage. With that approach, one can only create objects smaller than the positioning stage, and large stages can be quite expensive. We propose a new approach to precise positioning of a tool that combines manual and automatic positioning: in our approach, the user coarsely positions a frame containing the tool in an approximation of the desired path, while the device tracks the frame's location and adjusts the position of the tool within the frame to correct the user's positioning error in real time. Because the automatic positioning need only cover the range of the human's positioning error, this frame can be small and inexpensive, and because the human has unlimited range, such a frame can be used to precisely position tools over an unlimited range.

References

  1. Al-Kindi, G., Baul, R., and Gill, K. 1993. Vision-controlled CNC machines. Computing and Control Engineering Journal 4, 2, 92--96.Google ScholarGoogle ScholarCross RefCross Ref
  2. Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM Trans. Graph. 29, 4 (July), 60:1--60:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (July), 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Denso-Wave Incorporated. QR Code Specification. http://www.denso-wave.com/qrcode/index-e.html.Google ScholarGoogle Scholar
  5. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (July), 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Drumm, B., 2011. Printrbot. http://www.printrbot.com/.Google ScholarGoogle Scholar
  7. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N. J., Pottmann, H., and Pauly, M. 2010. Paneling architectural freeform surfaces. ACM Trans. Graph. 29, 4 (July), 45:1--45:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ferraiolo, J., Fujisawa, J., and Jackson, D., 2003. Scalable Vector Graphics (SVG) 1.1 Specification. World Wide Web Consortium, Recommendation REC-SVG11-20030114.Google ScholarGoogle Scholar
  9. Fischler, M. A., and Bolles, R. C. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 6 (June), 381--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Getting, I. 1993. Perspective/navigation-The Global Positioning System. IEEE Spectrum 30, 12, 36--38, 43--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gross, M. 2009. Now more than ever: Computational thinking and a science of design. Japan Society for the Science of Design 16, 2, 50--54.Google ScholarGoogle Scholar
  12. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 4 (July), 61:1--61:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hokanson, T., and Reilly, C. DIYLILCNC. http://diylilcnc.org/.Google ScholarGoogle Scholar
  14. Kelly, S. Bluumax CNC. http://www.bluumaxcnc.com/Gantry-Router.html.Google ScholarGoogle Scholar
  15. Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer, A., and Pottmann, H. 2008. Curved folding. ACM Trans. Graph. 27, 3 (Aug.), 75:1--75:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kragic, D., Kragic, D., Marayong, P., Li, M., Okamura, A. M., and Hager, G. D. 2005. Human-machine collaborative systems for microsurgical applications. International Journal of Robotics Research 24, 731--741. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Landay, J. A. 2009. Technical perspective: Design tools for the rest of us. Commun. ACM 52, 12 (Dec.), 80--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. ACM Trans. Graph. 30, 4 (Aug.), 85:1--85:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. LG. LSM-100. http://www.lg.com/ae/it-products/external-hard-disk/LG-LSM-100.jsp.Google ScholarGoogle Scholar
  20. MakerBot Industries. MakerBot. http://www.makerbot.com/.Google ScholarGoogle Scholar
  21. Mako Surgical. RIO Robotic Arm Interactive System.Google ScholarGoogle Scholar
  22. Moeslund, T. B., Hilton, A., and Krüger, V. 2006. A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104, 2-3 (Nov.), 90--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mori, Y., and Igarashi, T. 2007. Plushie: an interactive design system for plush toys. ACM Trans. Graph. 26, 3 (Aug.), 45:1--45:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9, 1, 62--66.Google ScholarGoogle ScholarCross RefCross Ref
  25. Priyantha, N. B., Chakraborty, A., and Balakrishnan, H. 2000. The Cricket location-support system. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, ACM Press, MobiCom '00, 32--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Saul, G., Lau, M., Mitani, J., and Igarashi, T. 2011. SketchChair: an all-in-one chair design system for end users. In Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction, ACM Press, TEI '11, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sells, E., Smith, Z., Bailard, S., Bowyer, A., and Olliver, V. 2009. RepRap: The Replicating Rapid Prototyper-maximizing customizability by breeding the means of production. Handbook of Research in Mass Customization and Personalization 1, 568--580.Google ScholarGoogle ScholarCross RefCross Ref
  28. Shiratori, T., Park, H. S., Sigal, L., Sheikh, Y., and Hodgins, J. K. 2011. Motion capture from body-mounted cameras. ACM Trans. Graph. 30, 4 (July), 31:1--31:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. ShopBot Tools. ShopBot. http://www.shopbottools.com/.Google ScholarGoogle Scholar
  30. Szeliski, R. 2006. Image alignment and stitching: a tutorial. Found. Trends. Comput. Graph. Vis. 2, 1 (Jan.), 1--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Techno CNC Router Systems. TechnoVision.Google ScholarGoogle Scholar
  32. Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. 2000. Bundle adjustment - A modern synthesis. In Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, Springer-Verlag, ICCV '99, 298--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Welch, G., and Foxlin, E. 2002. Motion tracking: no silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl. 22, 6 (Nov.), 24--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital bas-relief from 3D scenes. ACM Trans. Graph. 26, 3 (Aug.), 32:1--32:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xin, S., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. 2011. Making burr puzzles from 3D models. ACM Trans. Graph. 30, 4 (July), 97:1--97:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zahnert, M. G., Fonseka, E., and Ilic, A., 2010. Handheld Scanner with High Image Quality. U. S. Patent US 2010/0296140 A1.Google ScholarGoogle Scholar
  37. Zitova, B., and Flusser, J. 2003. Image registration methods: a survey. Image and Vision Computing 21, 11 (Oct.), 977--1000.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 31, Issue 4
    July 2012
    935 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2185520
    Issue’s Table of Contents

    Copyright © 2012 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 1 July 2012
    Published in tog Volume 31, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader