skip to main content
research-article

REVEL: tactile feedback technology for augmented reality

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

REVEL is an augmented reality (AR) tactile technology that allows for change to the tactile feeling of real objects by augmenting them with virtual tactile textures using a device worn by the user. Unlike previous attempts to enhance AR environments with haptics, we neither physically actuate objects or use any force- or tactile-feedback devices, nor require users to wear tactile gloves or other apparatus on their hands. Instead, we employ the principle of reverse electrovibration where we inject a weak electrical signal anywhere on the user body creating an oscillating electrical field around the user's fingers. When sliding his or her fingers on a surface of the object, the user perceives highly distinctive tactile textures augmenting the physical object. By tracking the objects and location of the touch, we associate dynamic tactile sensations to the interaction context. REVEL is built upon our previous work on designing electrovibration-based tactile feedback for touch surfaces [Bau, et al. 2010]. In this paper we expand tactile interfaces based on electrovibration beyond touch surfaces and bring them into the real world. We demonstrate a broad range of application scenarios where our technology can be used to enhance AR interaction with dynamic and unobtrusive tactile feedback.

Skip Supplemental Material Section

Supplemental Material

tp187_12.mp4

References

  1. Amberg, M., Fr, Giraud, R., Semail, B., Olivo, P., Casiez, R. and Roussel, N. 2011. STIMTAC: a tactile input device with programmable friction. In Proc. of UIST'11, ACM, 7--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Azuma, R. 1997. A Survey of Augmented Reality. Presence: Teleoperatore and Virtual Environments 6, 355--385.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S. and Macintyre, B. 2001. Recent Advances in Augmented Reality. IEEE Comput. Graph. Appl. 21, 34--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bau, O., Petrevski, U. and Mackay, W. 2009. BubbleWrap: a textile-based electromagnetic haptic display. In Proc. of CHI EA'09, ACM, 3607--3612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bau, O., Poupyrev, I., Israr, A. and Harrison, C. 2010. TeslaTouch: electrovibration for touch surfaces. In Proc. of UIST'10, ACM, 283--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Benko, H., Wilson, A., Balakrishnan, R. and Chen, B. Sphere: multi-touch interactions on a spherical display. In Proc. of UIST'08, ACM. 77--86 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bianchi, G., Knoerlein, B., Szekely, M. and Harders, M. 2006. High precision augmented reality haptics. In Proc. of EuroHaptics'06, 169--178.Google ScholarGoogle Scholar
  8. Burdea, G. C. 1996. Force and touch feedback for virtual reality. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Carlin, A., Hoffman, H. and Weghorst, S. 1997. Virtual reality and tactile augmentation in the treatment of spider phobia: a case report. Behavior Research and Therapy 35, 153--159.Google ScholarGoogle ScholarCross RefCross Ref
  10. Fitzmaurice, G., Ishii, H. and Buxton, W. 1995. Bricks: Laying the foundations for graspable user interfaces. In Proc. of CHI'95, ACM, 442--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Grimnes, S. 1983. Dielectric breakdown of human skin in vivo. Medical and Biological Engineering and Computing 21, 379--381.Google ScholarGoogle ScholarCross RefCross Ref
  12. Grimnes, S. 1983. Electrovibration, cutaneous sensation of microampere current. Acta Physiologica Scandinavica 118, 19--25.Google ScholarGoogle ScholarCross RefCross Ref
  13. Harrison, C., Benko, H. and Wilson, A. 2011. OmniTouch: Wearable Multitouch Interaction Everywhere. In Proc. of UIST'11, ACM, 441--450 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Huang, K., Starner, T., Do, E., Weiberg, G., Kohlsdorf, D., Ahlrichs, C. and Leibrandt, R. 2010. Mobile music touch: mobile tactile stimulation for passive learning. In Proc. of CHI'10, ACM, 791--800. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Israr, A. and Poupyrev, I. 2011. Tactile brush: Drawing on skin with a tactile grid display. In Proc. of CHI'11, ACM, 2019--2028. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Iwata, H., Yano, H., Nakaizumi, F. and Kawamura, R. 2001. Project FEELEX: adding haptic surface to graphics. In Proc. of SIGGRAPH'01, ACM, 469-476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jeon, S. and Choi, S. 2009. Haptic Augmented Reality: Taxonomy and an Example of Stiffness Modulation. Presence: Teleoperators and Virtual Environments 18, 387--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kaczmarek, K., Nammi, K., Agarwal, A., Tyler, M., Haase, S. and Beebe, D. 2006. Polarity effect in electrovibration for tactile display. IEEE Transactions on Biomedical Engineering 10, 2047--2054.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kajimoto, H. 2010. Electro-tactile display with real-time impedance feedback. In Proc. of Haptics Symposium, Springer-Verlag, 285--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K. and Tachibana, K. 2000. Virtual Object Manipulation on a Table-Top AR Environment. In Proc. of International Symposium on Augmented Reality, ACM, 111--119.Google ScholarGoogle ScholarCross RefCross Ref
  21. Knoerlein, B., Szekely, G. and Harders, M. 2007. Visuo-haptic collaborative augmented reality ping-pong. In Proc. of ACET'07, ACM, 91--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kron, A. and Schmidt, G. 2003. Multi-Fingered Tactile Feedback from Virtual and Remote Environments. In Proc. of HAPTICS'03, IEEE, 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kruijff, E., Schmalstieg, D. and Beckhaus, S. 2006. Using Neuromuscular Electrical Stimulation for Pseudo-Haptic Feedback. In Proceedings of VRST'06, ACM, 316--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mallinckrodt, E., Hughes, A. and Sleator, W. 1953. Perception by the Skin of Electrically Induced Vibrations. Science 118, 277--278.Google ScholarGoogle Scholar
  25. Matsushita, N. and Rekimoto, J. 1997. HoloWall: designing a finger, hand, body, and object sensitive wall. In Proc. of UIST'97, ACM, 209--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. MICROSOFT. 2010 Microsoft Surface 2.0.Google ScholarGoogle Scholar
  27. Minsky, M., Ming, O.-Y., Steele, O., Frederick P. Brooks, J. and Behensky, M. 1990. Feeling and seeing: issues in force display. In Proc. of SIGGRAPH'90. 235--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Niwa, M., Nozaki, T., Maeda, T. and Ando, H. 2010. Fingernail-Mounted Display of Attraction Force and Texture. In Proc. of EuroHaptics'10, Springer-Verlag, 3--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Nojima, T., Sekiguchi, D., Inami, M. and Tachi, S. 2002. The SmartTool: A system for Augmented Reality of Haptics. In Proc. of VR'02, IEEE, 67--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Poupyrev, I., Tan, D. et al. 2002. Developing a generic augmented-reality interface, IEEE Computer, 2002. 35: 44--49 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Poupyrev, I. and Maruyama, S. 2003. Tactile interfaces for small touch screens. In Proc. of UIST'03, ACM, 217--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Poupyrev, I., Nashida, T., Okabe, M. 2007. Actuation and Tangible User Interfaces: the Vaucanson Duck, Robots, and Shape Displays. In Proc. of TEI'07, ACM, 205--212 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Rekimoto, J. 2009. SenseableRays: Opto-Haptic Substitution for Touch-Enhanced Interactive Spaces. In Proc. of CHI EA'09 ACM, 2519--2528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Rekimoto, J. and Saitoh, M. 1999. Augmented surfaces: a spatially continuous work space for hybrid computing environments. In Proc. of CHI'99, ACM, 378--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ryu, J. and Kim, G. 2004. Using a Vibro-tactile Display for Enhanced Collision Perception and Presence. In Proc. of VRST'04 ACM, 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Schmalstieg, D., Fuhrmann, A. and Hesina, G. 2000. Bridging multiple user interface dimensions with augmented reality. In Proc. of ISAR'00, IEEE, 20--29Google ScholarGoogle Scholar
  37. Strong, R. M. and Troxel, D. E. 1970. An electrotactile display. IEEE Transactions on Man-Machine Systems 11, 72--79.Google ScholarGoogle ScholarCross RefCross Ref
  38. Takeuchi, Y. 2010. Gilded gait: reshaping the urban experience with augmented footsteps. In Proc. of UIST'10, ACM, 185--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tamaki, E., Miyaki, T. and Rekimoto, J. 2011. PossessedHand: techniques for controlling human hands using electrical muscles stimuli. In Proc. of the SIGCHI 2011, ACM, 543--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tan, H. and Pentland, A. 1997. Tactual displays for wearable computing. In ISWC'97 IEEE, 84--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tang, H. and Beebe, D. 1998. A microfabricated electrostatic haptic display for persons with visual imairments. IEEE Transactions on Rehabilitation Engineering 6, 241--248.Google ScholarGoogle ScholarCross RefCross Ref
  42. Tsetserukou, D., Sato, K. and Tachi, S. 2010. ExoInterfaces: Novel Exosceleton Haptic Interfaces for Virtual Reality, Augmented Sport and Rehabilitation. In Proc. of the Augmented Human'10 2010 ACM, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ullmer, B. and Ishii, H. 1997. The metaDESK: models and prototypes for tangible user interfaces. In Proc. of UIST'97 ACM, 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Vallino, J. and Brown, C. 1999. Haptics in augmented reality. In Proceedings of the Multimedia Computing and Systems 1999 IEEE, 195--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Webster, J. 1998. Medical instrumentation: Application and design Wiley, 173.Google ScholarGoogle Scholar
  46. Willis, K. D. D., Poupyrev, I., Hudson, S. E. and Mahler, M. 2011. SideBySide: ad-hoc multi-user interaction with handheld projectors. In Proc. of UIST'11, ACM, 431--440. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wilson, A. D. 2010. Using a depth camera as a touch sensor. In Proc. of ITS 2010, 2010 ACM, 69--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wilson, A. D. and Benko, H. 2010. Combining multiple depth cameras and projectors for interactions on, above and between surfaces. In Proc. of UIST'10, ACM, 273--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Woodward, C., Honkamaa, P., Jppinen, J. and Pykkimies, W. 2004. Camball - augmented virtual table tennis with real rackets. In Proc. of the ACET, ACM, 275--276. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. REVEL: tactile feedback technology for augmented reality

        Recommendations

        Reviews

        Angelica de Antonio

        This paper presents a new technology for tactile feedback in augmented reality (AR) applications. It is based on the generation of a reverse electrovibration, which provokes a tactile sensation that is felt by users when they slide their fingers on a certain surface. Unlike traditional approaches to AR tactile displays, this solution does not rely on instrumenting real-world objects with active devices but on instrumenting the user's body. It allows for the application of virtual tactile textures to both virtual and real objects and surfaces. This technology opens up the potential for really ubiquitous tactile interfaces that can be used almost anywhere, whenever the target objects and surfaces meet some compatibility constraints. Several ways to achieve the required compatibility are described. The paper presents the design of the REVEL tactile display and its underlying physical principle, and describes several application scenarios, some already implemented and others of a more futuristic nature. The authors do a good job of comparing their proposal to the currently existing alternatives. They help readers understand the potential for this solution, without neglecting the limitations of the approach. Online Computing Reviews Service

        Access critical reviews of Computing literature here

        Become a reviewer for Computing Reviews.

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 4
          July 2012
          935 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2185520
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2012
          Published in tog Volume 31, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader