skip to main content
research-article

Highlight microdisparity for improved gloss depiction

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Human stereo perception of glossy materials is substantially different from the perception of diffuse surfaces: A single point on a diffuse object appears the same for both eyes, whereas it appears different to both eyes on a specular object. As highlights are blurry reflections of light sources they have depth themselves, which is different from the depth of the reflecting surface. We call this difference in depth impression the "highlight disparity". Due to artistic motivation, for technical reasons, or because of incomplete data, highlights often have to be depicted on-surface, without any disparity. However, it has been shown that a lack of disparity decreases the perceived glossiness and authenticity of a material. To remedy this contradiction, our work introduces a technique for depiction of glossy materials, which improves over simple on-surface highlights, and avoids the problems of physical highlights. Our technique is computationally simple, can be easily integrated in an existing (GPU) shading system, and allows for local and interactive artistic control.

Skip Supplemental Material Section

Supplemental Material

tp192_12.mp4

References

  1. Blake, A., and Brelstaff, G. 1988. Geometry from specularities. In Proc. Int. Conf. on Computer Vision, 394--403.Google ScholarGoogle Scholar
  2. Blake, A., and Bülthoff, H. 1990. Does the brain know the physics of specular reflection? Nature 343, 6254, 165--168.Google ScholarGoogle Scholar
  3. Blake, A. 1985. Specular stereo. In Proc. Int. J. Conf. on Artificial Intell, 973--976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brewster, D. 1861. On binocular lustre. Reports of British Association 2, 29--31.Google ScholarGoogle Scholar
  5. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2011. A perceptual model for disparity. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dove, H. 1851. Über die Ursachen des Glanzes und der Irradiation, abgeleitet aus chromatischen Versuchen mit dem Stereoskop. Annalen der Physik 159, 5, 169--183.Google ScholarGoogle ScholarCross RefCross Ref
  7. Fleming, R. W., Torralba, A., and Adelson, E. H. 2004. Specular reflections and the perception of shape. J Vision 4, 9.Google ScholarGoogle ScholarCross RefCross Ref
  8. Hess, R., Kingdom, F., and Ziegler, L. 1999. On the relationship between the spatial channels for luminance and disparity processing. Vis. Res. 39, 3, 559--568.Google ScholarGoogle ScholarCross RefCross Ref
  9. Howard, I. 1995. Depth from binocular rivalry without spatial disparity. Perception 24, 67--67.Google ScholarGoogle ScholarCross RefCross Ref
  10. Hurlbert, A., Cumming, B., and Parker, A. 1991. Recognition and perceptual use of specular reflections. Investigative Ophthalmology & Visual Science 32, 105.Google ScholarGoogle Scholar
  11. Kirschmann, A. 1895. Der Metallglanz und die Parallaxe des indirecten Sehens. Verlag von Wilhelm Engelmann.Google ScholarGoogle Scholar
  12. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., and Gross, M. 2010. Nonlinear disparity mapping for stereoscopic 3d. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4, 75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Obein, G., Knoblauch, K., and Vienot, F. 2004. Difference scaling of gloss: nonlinearity, binocularity, and constancy. J Vision 4, 9.Google ScholarGoogle ScholarCross RefCross Ref
  14. Paille, D., Monot, A., Dumont-Becle, P., and Kemeny, A. 2001. Luminance binocular disparity for 3d surface simulation. In Proc. SPIE, vol. 4299, 622.Google ScholarGoogle Scholar
  15. Pellacini, F., Ferwerda, J., and Greenberg, D. 2000. Toward a psychophysically-based light reflection model for image synthesis. In Proc. SIGGRAPH, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ritschel, T., Ihrke, M., Frisvad, J. R., Coppens, J., Myszkowski, K., and Seidel, H.-P. 2009. Temporal Glare: Real-Time Dynamic Simulation of the Scattering in the Human Eye. Comput. Graph. Forum (Proc. Eurographics) 28, 2, 183--92.Google ScholarGoogle ScholarCross RefCross Ref
  17. Robertson, B. 2009. Monsters of the deep. Comput. Graph. World 32, 3.Google ScholarGoogle Scholar
  18. Sakano, Y., and Ando, H. 2010. Effects of head motion and stereo viewing on perceived glossiness. J Vision 10, 9, 15.Google ScholarGoogle ScholarCross RefCross Ref
  19. Sousa, T., Kasyan, N., and Schulz, N. 2012. GPU Pro 3. CRC Press, ch. CryENGINE, 163.Google ScholarGoogle Scholar
  20. Tan, R., and Ikeuchi, K. 2005. Separating reflection components of textured surfaces using a single image. PAMI 27, 2, 178--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ďuriković, R., and Martens, W. 2003. Simulation of sparkling and depth effect in paints. In Proc. SCCG, 207--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Vergne, R., Pacanowski, R., Barla, P., Granier, X., and Schlick, C. 2009. Light warping for enhanced surface depiction. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3, 25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Wendt, G., Faul, F., and Mausfeld, R. 2008. Highlight disparity contributes to the authenticity and strength of perceived glossiness. J Vision 8, 1.Google ScholarGoogle ScholarCross RefCross Ref
  24. Wendt, G., Faul, F., Ekroll, V., and Mausfeld, R. 2010. Disparity, motion, and color information improve gloss constancy performance. J Vision 10, 9.Google ScholarGoogle ScholarCross RefCross Ref
  25. Wills, J., Agarwal, S., Kriegman, D., and Belongie, S. 2009. Toward a perceptual space for gloss. ACM Trans. Graph. 28, 4, 103. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 31, Issue 4
    July 2012
    935 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2185520
    Issue’s Table of Contents

    Copyright © 2012 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 1 July 2012
    Published in tog Volume 31, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader