skip to main content
research-article

Adaptive image-based intersection volume

Authors Info & Claims
Published:01 July 2012Publication History
Skip Abstract Section

Abstract

A method for image-based contact detection and modeling, with guaranteed precision on the intersection volume, is presented. Unlike previous image-based methods, our method optimizes a nonuniform ray sampling resolution and allows precise control of the volume error. By cumulatively projecting all mesh edges into a generalized 2D texture, we construct a novel data structure, the Error Bound Polynomial Image (EBPI), which allows efficient computation of the maximum volume error as a function of ray density. Based on a precision criterion, EBPI pixels are subdivided or clustered. The rays are then cast in the projection direction according to the non-uniform resolution. The EBPI data, combined with ray-surface intersection points and normals, is also used to detect transient edges at surface intersections. This allows us to model intersection volumes at arbitrary resolution, while avoiding the geometric computation of mesh intersections. Moreover, the ray casting acceleration data structures can be reused for the generation of high quality images.

Skip Supplemental Material Section

Supplemental Material

tp197_12.mp4

References

  1. Allard, J., Faure, F., Courtecuisse, H., Falipou, F., Duriez, C., and Kry, P. G. 2010. Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29 (July), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baciu, G., and Wong, W. S.-K. 2004. Image-based collision detection for deformable cloth models. IEEE Transactions on Visualization and Computer Graphics 10, 649--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barbić, J., and James, D. 2007. Time-critical distributed contact for 6-dof haptic rendering of adaptively sampled reduced deformable models. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barbić, J., and James, D. L. 2010. Subspace self-collision culling. ACM Trans. Graph. 29 (July), 81:1--81:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dingliana, J., and O'Sullivan, C. 2000. Graceful degradation of collision handling in physically based animation. Computer Graphics Forum 19, 239--247.Google ScholarGoogle ScholarCross RefCross Ref
  6. Dold, C. 2005. Extended gaussian images for the registration of terrestrial scan data. In ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005".Google ScholarGoogle Scholar
  7. Faure, F., Barbier, S., Allard, J., and Falipou, F. 2008. Image-based collision detection and response between arbitrary volume objects. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Galoppo, N., Otaduy, M. A., Mecklenburg, P., Gross, M., and Lin, M. C. 2006. Fast simulation of deformable models in contact using dynamic deformation textures. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Govindaraju, N. K., Knott, D., Jain, N., Kabul, I., Tamstorf, R., Gayle, R., Lin, M. C., and Manocha, D. 2005. Interactive collision detection between deformable models using chromatic decomposition. ACM Trans. Graph. 24 (July), 991--999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hable, J., and Rossignac, J. 2005. Blister: Gpu-based rendering of boolean combinations of free-form triangulated shapes. ACM Trans. Graph. 24 (July), 1024--1031. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Harmon, D., Panozzo, D., Sorkine, O., and Zorin, D. 2011. Interference-aware geometric modeling. ACM Trans. Graph. 30 (Dec.), 137:1--137:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Heidelberger, B., Teschner, M., Keiser, R., Muller, M., and Gross, M. 2004. Consistent penetration depth estimation for deformable collision response. In Proc. VMV, 339--346.Google ScholarGoogle Scholar
  13. Heidelberger, B., Teschner, M., and Gross, M. 2004. Detection of collisions and self-collisions using image-space techniques. In Proc. WSCG, 145--152.Google ScholarGoogle Scholar
  14. Hermann, E., Faure, F., and Raffin, B. 2008. Ray-traced collision detection for deformable bodies. In 3rd International Conference on Computer Graphics Theory and Applications, 293--299.Google ScholarGoogle Scholar
  15. Horn, B. K. P. 1984. Extended gaussian images. Proc. of the IEEE 72, 1671--1686.Google ScholarGoogle ScholarCross RefCross Ref
  16. Je, C., Tang, M., Lee, Y., Lee, M., and Kim, Y. J. 2012. Polydepth: Real-time penetration depth computation using iterative contact-space projection. ACM Trans. Graph. 31, 5:1--5:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Menon, J., Marisa, R. J., and Zagajac, J. 1994. More powerful solid modeling through ray representations. IEEE Comput. Graph. Appl. 14 (May), 22--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. NVIDIA. 2007. NVIDIA CUDA Compute Unified Device Architecture Programming Guide. NVIDIA Corporation.Google ScholarGoogle Scholar
  19. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: a general purpose ray tracing engine. ACM Trans. Graph. 29 (July), 66:1--66:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2007. Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3 ed. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ruina, A., Bertram, J. E., and Srinivasan, M. 2005. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. Journal of Theoretical Biology 237 (Nov), 170--192.Google ScholarGoogle ScholarCross RefCross Ref
  22. Schvartzman, S. C., Pérez,. G., and Otaduy, M. A. 2010. Star-contours for efficient hierarchical self-collision detection. ACM Trans. Graph. 29 (July), 80:1--80:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sud, A., Govindaraju, N., Gayle, R., Kabul, I., and Manocha, D. 2006. Fast proximity computation among deformable models using discrete voronoi diagrams. ACM Trans. Graph. 25 (July), 1144--1153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Tang, M., Manocha, D., and Tong, R. 2009. Multi-core collision detection between deformable models. In 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, 355--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Tang, M., Manocha, D., Lin, J., and Tong, R. 2011. Collision-streams: fast gpu-based collision detection for deformable models. In Symposium on Interactive 3D Graphics and Games, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Teschner, M., Kimmerle, S., Heidelberge, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., Strasser, W., and Volino, P. 2004. Collision detection for deformable objects. In Eurographics State-of-the-Art Report, 119--139.Google ScholarGoogle Scholar

Index Terms

  1. Adaptive image-based intersection volume

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader