skip to main content
research-article

Energy-based self-collision culling for arbitrary mesh deformations

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

In this paper, we accelerate self-collision detection (SCD) for a deforming triangle mesh by exploiting the idea that a mesh cannot self collide unless it deforms enough. Unlike prior work on subspace self-collision culling which is restricted to low-rank deformation subspaces, our energy-based approach supports arbitrary mesh deformations while still being fast. Given a bounding volume hierarchy (BVH) for a triangle mesh, we precompute Energy-based Self-Collision Culling (ESCC) certificates on bounding-volume-related sub-meshes which indicate the amount of deformation energy required for it to self collide. After updating energy values at runtime, many bounding-volume self-collision queries can be culled using the ESCC certificates. We propose an affine-frame Laplacian-based energy definition which sports a highly optimized certificate pre-process, and fast runtime energy evaluation. The latter is performed hierarchically to amortize Laplacian energy and affine-frame estimation computations. ESCC supports both discrete and continuous SCD with detailed and nonsmooth geometry. We observe significant culling on many examples, with SCD speed-ups up to 26X.

Skip Supplemental Material Section

Supplemental Material

tp199_12.mp4

References

  1. Barbić, J., and James, D. L. 2010. Subspace Self-Collision Culling. ACM Transactions on Graphics 29, 4 (July), 81:1--81:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Briceño, H. M., Sander, P. V., McMillan, L., Gortler, S., and Hoppe, H. 2003. Geometry videos: a new representation for 3D animations. In Symposium on Computer Animation, 136--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust Treatment of Collisions, Contact, and Friction for Cloth Animation. ACM Transactions on Graphics 21, 3, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Burges, C. 1998. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery 2, 2, 121--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM Transactions on Graphics 23, 3 (Aug.), 905--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Curtis, S., Tamstorf, R., and Manocha, D. 2008. Fast collision detection for deformable models using representative-triangles. In Proc. ACM Symp. Interactive 3D Graphics and Games, 61--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Demmel, J. 1997. Applied numerical linear algebra. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gao, J., Guibas, L., and Nguyen, A. 2006. Deformable spanners and applications. Computational Geometry: Theory and Appl. 35, 1-2, 2--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Goldsmith, J., and Salmon, J. 1987. Automatic creation of object hierarchies for ray tracing. IEEE Computer Graphics and Applications 7, 5, 14--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gottschalk, S., Lin, M., and Manocha, D. 1996. OBB-Tree: A Hierarchical Structure for Rapid Interference Detection. In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series, 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Govindaraju, N., Knott, D., Jain, N., Kabul, I., Tamstorf, R., Gayle, R., Lin, M., and Manocha, D. 2005. Interactive collision detection between deformable models using chromatic decomposition. ACM Transactions on Graphics 24, 3, 991--999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Govindaraju, N., Lin, M., and Manocha, D. 2005. Quick-CULLIDE: Fast inter-and intra-object collision culling using graphics hardware. In Proc. IEEE Virtual Reality, 59--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Grinspun, E., and Schröder, P. 2001. Normal bounds for subdivision-surface interference detection. In IEEE Visualization 2001, 333--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Guibas, L., Nguyen, A., Russel, D., and Zhang, L. 2002. Collision Detection for Deforming Necklaces. In Proc. of the ACM Symposium on Computational Geometry, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Guibas, L. 2004. Kinetic Data Structures. In Handbook of Data Structures and Applications. Chapman and Hall/CRC.Google ScholarGoogle Scholar
  16. Heidelberger, B., Teschner, M., and Gross, M. 2004. Detection of collisions and self-collisions using image-space techniques. Journal of WSCG 12, 3, 145--152.Google ScholarGoogle Scholar
  17. Hubbard, P. M. 1995. Collision Detection for Interactive Graphics Applications. PhD thesis, Department of Computer Science, Brown University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. James, D. L., and Pai, D. K. 2004. BD-Tree: Output-sensitive collision detection for reduced deformable models. ACM Transactions on Graphics 23, 3 (Aug.), 393--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. ACM Transactions on Graphics 24, 3 (Aug.), 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H., and Zikan, K. 1998. Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs. IEEE Trans. Vis. & Comp. Graphics 4, 1, 21--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Meyer, M., Desbrun, M., Schröeder, P., and Barr, A. H. 2002. Discrete differential geometry operators for triangulated 2-manifolds. In Proceedings of VisMath.Google ScholarGoogle Scholar
  22. Müller, M., and Chentanez, N. 2011. Solid simulation with oriented particles. ACM Transactions on Graphics 30 (Aug.), 92:1--92:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. on Graphics 24, 3, 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Nickalls, R. 1993. A new approach to solving the cubic: Cardan's solution revealed. The Mathematical Gazette 77, 480, 354--359.Google ScholarGoogle Scholar
  25. Provot, X. 1997. Collision and Self-Collision Handling in Cloth Model Dedicated to Design Garments. In Graphics Interface, 177--189.Google ScholarGoogle Scholar
  26. Rivers, A. R., and James, D. L. 2007. FastLSM: Fast Lattice Shape Matching for Robust Real-Time Deformation. ACM Transactions on Graphics 26, 3, 82:1--82:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schenk, O., and Gärtner, K. 2004. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems 20, 3, 475--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schvartzman, S. C., Gascón, J., and Otaduy, M. A. 2009. Bounded normal trees for reduced deformations of triangulated surfaces. In Symp. on Computer Animation (SCA), 75--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Schvartzman, S. C., lvaro G. Pérez, and Otaduy, M. A. 2010. Star-contours for efficient hierarchical self-collision detection. ACM Transactions on Graphics 29, 4 (July), 80:1--80:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Steinemann, D., Otaduy, M. A., and Gross, M. 2008. Fast adaptive shape matching deformations. In Symposium on Computer Animation, 87--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sud, A., Govindaraju, N., Gayle, R., Kabul, I., and Manocha, D. 2006. Fast Proximity Computation Among Deformable Models using Discrete Voronoi Diagrams. ACM Transactions on Graphics 25, 3, 1144--1153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tang, M., Curtis, S., Yoon, S.-E., and Manocha, D. 2009. Interactive continuous collision detection between deformable models using connectivity-based culling. IEEE Trans. on Visualization and Computer Graphics 15, 544--557. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Teschner, M., et al. 2005. Collision Detection for Deformable Objects. Computer Graphics Forum 24, 1, 61--81.Google ScholarGoogle ScholarCross RefCross Ref
  34. van den Bergen, G. 1997. Efficient Collision Detection of Complex Deformable Models using AABB Trees. Journal of Graphics Tools 2, 4, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Volino, P., and Magnenat-Thalmann, N. 1994. Efficient Self-Collision Detection on Smoothly Discretized Surface Animations using Geometrical Shape Regularity. Computer Graphics Forum 13, 3, 155--166.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Energy-based self-collision culling for arbitrary mesh deformations
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader