Abstract
We introduce an efficient method for synthesizing acceleration noise -- sound produced when an object experiences abrupt rigid-body acceleration due to collisions or other contact events. We approach this in two main steps. First, we estimate continuous contact force profiles from rigid-body impulses using a simple model based on Hertz contact theory. Next, we compute solutions to the acoustic wave equation due to short acceleration pulses in each rigid-body degree of freedom. We introduce an efficient representation for these solutions -- Precomputed Acceleration Noise -- which allows us to accurately estimate sound due to arbitrary rigid-body accelerations. We find that the addition of acceleration noise significantly complements the standard modal sound algorithm, especially for small objects.
Supplemental Material
Available for Download
Supplemental material.
- Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM Transactions on Graphics 27, 3 (Aug.), 24:1--24:9. Google Scholar
Digital Library
- Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin Shells. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2009) 28, 3 (Dec.). Google Scholar
Digital Library
- Chaigne, A., and Lambourg, C. 2001. Time-domain simulation of damped impacted plates. i. theory and experiments. Journal of the Acoustical Society of America 109, 4, 1422--1432.Google Scholar
Cross Ref
- Endo, M., Nishi, S., Nakagawa, M., and Sakata, M. 1981. Sound radiation from a circular cylinder subjected to elastic collision by a sphere. Journal of Sound and Vibration 75, 2, 285--302.Google Scholar
Cross Ref
- Flores, P., Ambrósio, J., Claro, J. C. P., and Lakarani, H. M. 2006. Influence of the contact-impact force model on the dynamic response of multi-body systems. In Proceedings of the Institution of Mechanical Engineers. Part K: Journal of Multi-Body Dynamics, vol. 220, 21--34.Google Scholar
Cross Ref
- Flores, P., Ambrosio, J. A. C., Claro, J. C. P., and Lankarani, H. M. 2008. Springer, ch. 3: Contact-Impact Force Models for Mechanical Systems.Google Scholar
- Flores, P., Machado, M., and Silva, M. T. 2011. On the continuous contact force models for soft materials in multibody dynamics. Multibody System Dynamics 25, 3, 357--375.Google Scholar
Cross Ref
- Gilardi, G., and Sharf, I. 2002. Literature survey of contact dynamics modelling. Mechanism and Machine Theory 37, 10, 1213--1239.Google Scholar
Cross Ref
- Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex rigid bodies with stacking. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003) 22, 3 (Aug.). Google Scholar
Digital Library
- Hertz, H. 1882. Über die Berührung fester elastiche Körper and über die harte (On the contact of elastic solids). J. reine und angewandte Mathematk 92, 156--171.Google Scholar
- Hippmann, G. 2004. An algorithm for compliant contact between complexly shaped bodies. Multibody System Dynamics 12, 4, 345--362.Google Scholar
Cross Ref
- Hughes, T. J. R. 2000. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, second ed. Dover Publications, Inc., Mineola, New York.Google Scholar
- Hunt, K. H., and Crossley, F. R. E. 1975. Coefficient of restitution interpreted as damping in vibroimpact. Journal of Applied Mechanics 42, 2, 440--445.Google Scholar
Cross Ref
- James, D. L., Barbič, J., and Pai, D. K. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987--995. Google Scholar
Digital Library
- Johnson, K. L. 1985. Contact Mechanics. Cambridge University Press.Google Scholar
- Koss, L. L., and Alfredson, R. J. 1973. Transient sound radiated by spheres undergoing and elastic collision. Journal of Sound and Vibration 27, 1, 59--75.Google Scholar
Cross Ref
- Lambourg, C., Chaigne, A., and Matignon, D. 2001. Time-domain simulation of damped impacted plates. ii. numerical model and results. Journal of the Acoustical Society of America 109, 4, 1433--1447.Google Scholar
Cross Ref
- Lankarani, H. M., and Nikravesh, P. E. 1990. A contact force model with hysteresis damping for impact analysis of multibody systems. Journal of Mechanical Design 112, 369--376.Google Scholar
Cross Ref
- Liu, Q.-H., and Tao, K. 1997. The perfectly matched layer for acoustic waves in absorptive media. Journal of the Acoustical Society of America 102, 4, 2072--2082.Google Scholar
Cross Ref
- Liu, Y. J. 2009. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press, Cambridge.Google Scholar
- Lloyd, B., Raghuvanshi, N., and Govindaraju, N. K. 2011. Sound synthesis for impact sounds in video games. In Proceedings of I3D 2011 Symposium on Interactive 3D Graphics and Games. Google Scholar
Digital Library
- Mehraby, K., Khademhosseini, H., and Poursina, M. 2011. Impact Noise Radiated by Collision of Two Spheres: Comparison Between Numerical Simulations, Experiments and Analytical Results. Journal of Mechanical Science and Technology 25, 7, 1675--1685.Google Scholar
Cross Ref
- Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. VisMath.Google Scholar
- Mitchell, D. P., and Netravali, A. N. 1988. Reconstruction filters in computer-graphics. In Proceedings of SIGGRAPH 1988, 221--228. Google Scholar
Digital Library
- O'Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 529--536. Google Scholar
Digital Library
- O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In ACM SIGGRAPH Symposium on Computer Animation, 175--181. Google Scholar
Digital Library
- Papetti, S., Avanzini, F., and Rocchesso, D. 2011. Numerical methods for a nonlinear impact model: A comparative study with closed-form corrections. IEEE Transactions on Audio, Speech and Language Processing 19, 7, 2146--2158. Google Scholar
Digital Library
- Ren, Z., Yeh, H., and Lin, M. 2010. Synthesizing contact sounds between textured models. In Virtual Reality Conference (VR), 2010 IEEE, 139--146. Google Scholar
Digital Library
- Richards, E. J., Wescott, M. E., and Jayapalan, R. K. 1979. On the prediction of impact noise, i: Acceleration noise. Journal of Sound and Vibration 62, 4, 547--575.Google Scholar
Cross Ref
- Richards, E. J., Wescott, M. E., and Jayapalan, R. K. 1979. On the prediction of impact noise, ii: Ringing noise. Journal of Sound and Vibration 65, 3, 419--451.Google Scholar
Cross Ref
- Ross, A., and Ostiguy, G. 2007. Propagation of the initial transient noise from an impacted plate. Journal of Sound and Vibration 301, 1, 28--42.Google Scholar
Cross Ref
- Schedin, S., Lambourge, C., and Chaigne, A. 1999. Transient sound fields from impacted plates: Comparison between numerical simulations and experiments. Journal of Sound and Vibration 221, 3, 471--490.Google Scholar
Cross Ref
- Schiehlen, W., and Seifried, R. 2004. Three approaches for elastodynamic contact in multibody systems. Multibody System Dynamics 12, 1, 1--16.Google Scholar
Cross Ref
- Serra, X., and Smith, J. 1990. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Computer Music Journal 14, 4, 12--24.Google Scholar
- Shen, L., and Liu, Y. J. 2007. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation. Computational Mechanics 40, 3, 461--472.Google Scholar
Cross Ref
- Stoelinga, C. N. J., and Lutfi, R. A. 2011. Modeling manner of contact in the synthesis of impact sounds for perceptual research. Journal of the Acoustical Society of America 130, 2, EL62--EL68.Google Scholar
Cross Ref
- van den Doel, K., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: Physically Based Sound Effects for Interactive Simulation and Animation. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 537--544. Google Scholar
Digital Library
- Verma, T. S., and Meng, T. H. Y. 2000. Extending spectral modeling synthesis with transient modeling synthesis. Computer Music Journal 24, 2, 47--59. Google Scholar
Digital Library
- Wåhlin, A. O., Gren, P. O., and Molin, N.-E. 1994. On structure borne sound: Experiments showing the initial transient acoustic wave field generated by an impacted plate. Journal of the Acoustical Society of America 96, 5, 2791--2797.Google Scholar
Cross Ref
- Yufang, W., and Zhongfang, T. 1992. Sound Radiated from the Impact of Two Cylinders. Journal of Sound and Vibration 159, 2, 295--303.Google Scholar
Cross Ref
- Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 3 (July). Google Scholar
Digital Library
- Zheng, C., and James, D. L. 2011. Toward high-quality modal contact sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011) 30, 4 (Aug.). Google Scholar
Digital Library
Index Terms
Precomputed acceleration noise for improved rigid-body sound
Recommendations
Toward high-quality modal contact sound
SIGGRAPH '11: ACM SIGGRAPH 2011 papersContact sound models based on linear modal analysis are commonly used with rigid body dynamics. Unfortunately, treating vibrating objects as "rigid" during collision and contact processing fundamentally limits the range of sounds that can be computed, ...
Toward high-quality modal contact sound
Contact sound models based on linear modal analysis are commonly used with rigid body dynamics. Unfortunately, treating vibrating objects as "rigid" during collision and contact processing fundamentally limits the range of sounds that can be computed, ...
Low-frequency structure-borne noise refinement based on rigid-flexible coupling model of powertrain mounting system
The refinement of low-frequency structure-borne noise generated by automotive powertrain mounting system usually adopts Transfer Path Analysis (TPA) and vehicle body plate optimisation, which require a lot of simulation or experiment work based on the ...





Comments