skip to main content
research-article

Reflections on simultaneous impact

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Resolving simultaneous impacts is an open and significant problem in collision response modeling. Existing algorithms in this domain fail to fulfill at least one of five physical desiderata. To address this we present a simple generalized impact model motivated by both the successes and pitfalls of two popular approaches: pair-wise propagation and linear complementarity models. Our algorithm is the first to satisfy all identified desiderata, including simultaneously guaranteeing symmetry preservation, kinetic energy conservation, and allowing break-away. Furthermore, we address the associated problem of inelastic collapse, proposing a complementary generalized restitution model that eliminates this source of nontermination. We then consider the application of our models to the synchronous time-integration of large-scale assemblies of impacting rigid bodies. To enable such simulations we formulate a consistent frictional impact model that continues to satisfy the desiderata. Finally, we validate our proposed algorithm by correctly capturing the observed characteristics of physical experiments including the phenomenon of extended patterns in vertically oscillated granular materials.

Skip Supplemental Material Section

Supplemental Material

tp219_12.mp4

References

  1. Alduán, I., and Otaduy, M. A. 2011. SPH granular flow with friction and cohesion. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA '11, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alduán, I., Tena, A., and Otaduy, M. A. 2009. Simulation of High-Resolution Granular Media. In Proc. of Congreso Español de Informática Gráfica.Google ScholarGoogle Scholar
  3. Amestoy, P. R., Duff, I. S., Koster, J., and L'Excellent, J.-Y. 2001. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications 23, 1, 15--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Amestoy, P. R., Guermouche, A., L'Excellent, J.-Y., and Pralet, S. 2006. Hybrid scheduling for the parallel solution of linear systems. Parallel Computing 32, 2, 136--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Anitescu, M., and Potra, F. R. 1997. Formulating Dynamic Multirigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems. ASME Nonlinear Dynamics 14, 231--247.Google ScholarGoogle ScholarCross RefCross Ref
  6. Baraff, D. 1989. Analytical methods for dynamic simulation of non-penetrating rigid bodies. In Computer Graphics (SIGGRAPH 89), 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bell, N., Yu, Y., and Mucha, P. J. 2005. Particle-based simulation of granular materials. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, New York, NY, USA, SCA '05, 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bernoulli, J. 1742. Op. CLXXVII, Propositiones variæ Mechanico-dynamicæ. In Opera Omnia. 253--313.Google ScholarGoogle Scholar
  9. Bernu, B., and Mazighi, R. 1990. One-Dimensional Bounce of Inelastically Colliding Marbles on a Wall. Journal of Physics A: Mathematical and General 23, 24, 5745--5754.Google ScholarGoogle ScholarCross RefCross Ref
  10. Bizon, C., Shattuck, M. D., Swift, J. B., McCormick, W. D., and Swinney, H. L. 1998. Patterns in 3d vertically oscillated granular layers: Simulation and experiment. Phys. Rev. Lett. 80, 1 (Jan), 57--60.Google ScholarGoogle ScholarCross RefCross Ref
  11. Boyd, S., and Vandenberghe, L. 2004. Convex Optimization. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Bridson, R., Fedkiw, R. P., and Anderson, J. 2002. Robust Treatment of Collisions, Contact, and Friction for Cloth Animation. ACM Trans. Graph. (SIGGRAPH 02) 21, 3 (July), 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Brogliato, B. 1999. Nonsmooth Mechanics: models, dynamics, and control, 2nd ed. Springer-Verlag.Google ScholarGoogle Scholar
  14. Chatterjee, A., and Ruina, A. L. 1998. A New Algebraic Rigid-Body Collision Law Based on Impulse Space Considerations. Journal of Applied Mechanics 65, 4, 939--951.Google ScholarGoogle ScholarCross RefCross Ref
  15. Cottle, R. W., Pang, J. S., and Stone, R. E. 1992. The Linear Complementarity Problem. Academic Press.Google ScholarGoogle Scholar
  16. D'Alembert, J. 1743. Traite de Dynamique.Google ScholarGoogle Scholar
  17. Ericson, C. 2004. Real-Time Collision Detection. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Erleben, K., and Dohlmann, H. 2007. Signed Distance Fields Using Single-Pass GPU Scan Conversion of Tetrahedra. In GPU Gems 3, 741--762.Google ScholarGoogle Scholar
  19. Erleben, K. 2007. Velocity-based shock propagation for multi-body dynamics animation. ACM Trans. Graph. 26, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Friedlander, M. P., 2007. BCLS: Bound Constrained Least Squares.Google ScholarGoogle Scholar
  21. Glocker, C. 2004. Concepts for Modeling Impacts without Friction. Acta Mechanica 168, 1--19.Google ScholarGoogle ScholarCross RefCross Ref
  22. Goldfarb, D., and Idnani, G. 1983. A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming 27, 1--33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex Rigid Bodies with Stacking. ACM Trans. Graph. (SIGGRAPH 03) 22, 3, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hahn, J. K. 1988. Realistic animation of rigid bodies. In Computer Graphics (SIGGRAPH 88), 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hairer, E., and Vilmart, G. 2006. Preprocessed discrete Moser--Veselov algorithm for the full dynamics of a rigid body. Journal of Physics A: Mathematical and General 39, 42, 13225.Google ScholarGoogle ScholarCross RefCross Ref
  26. Hairer, E., Lubich, C., and Wanner, G. 2002. Geometric numerical integration: Structure-Preserving Algorithms for Odinary Differential Equations. Springer.Google ScholarGoogle Scholar
  27. Hairer, E., Lubich, C., and Wanner, G. 2002. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag.Google ScholarGoogle Scholar
  28. Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust Treatment of Simultaneous Collisions. SIGGRAPH 08, ACM TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hascoët, E., Herrmann, H. J., and Loreto, V. 1999. Shock Propagation in a Granular Chain. Phys. Rev. E 59.Google ScholarGoogle ScholarCross RefCross Ref
  30. HSL. 2001. A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk.Google ScholarGoogle Scholar
  31. Ivanov, A. P. 1995. On Multiple Impact. Journal Applied Mathematics and Mechanics 59, 6, 887--902.Google ScholarGoogle ScholarCross RefCross Ref
  32. Johnson, W. 1976. Simple Linear Impact. Int. J. Mech. Eng. Educ. 4, 167--181.Google ScholarGoogle Scholar
  33. Kaufman, D. M., Edmunds, T., and Pai, D. K. 2005. Fast frictional dynamics for rigid bodies. ACM TOG (SIGGRAPH 05) 24, 3, 946--956. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Kaufman, D. M., Sueda, S., James, D. L., and Pai, D. K. 2008. Staggered Projections for Frictional Contact in Multibody Systems. ACM TOG (SIGGRAPH Asia 08) 27, 5, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Lawson, C. L., and Hanson, R. J. 1974. Solving least squares problems. Prentice-Hall.Google ScholarGoogle Scholar
  36. Lenaerts, T., and Dutré, P. 2009. Mixing fluids and granular materials. Computer Graphics Forum 28, 2, 213--218.Google ScholarGoogle Scholar
  37. Lubachevsky, B. 1991. How to Simulate Billiards and Similar Systems. Journal of Computational Physics 94, 255--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Luciani, A., Habibi, A., and Manzotti, E. 1995. A multi-scale physical model of granular materials. In Graph. Interf.Google ScholarGoogle Scholar
  39. Maclaurin, C. 1742. A Treatise on Fluxions.Google ScholarGoogle Scholar
  40. McNamara, S., and Young, W. R. 1994. Inelastic collapse in two dimensions. Phys. Rev. E 50, 1 (Jul), R28--R31.Google ScholarGoogle ScholarCross RefCross Ref
  41. Melo, F., Umbanhowar, P., and Swinney, H. L. 1994. Transition to parametric wave patterns in a vertically oscillated granular layer. Phys. Rev. Lett. 72, 1 (Jan), 172--175.Google ScholarGoogle ScholarCross RefCross Ref
  42. Miller, G., and Pearce, A. 1989. Globular dynamics: A connected particle system for animating viscous fluids. Computers and Graphics 13, 3, 305--309.Google ScholarGoogle ScholarCross RefCross Ref
  43. Mirtich, B., and Canny, J. F. 1995. Impulse-based dynamic simulation of rigid bodies. In Symp. on Inter. 3D Graph. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Moon, S. J., Swift, J. B., and Swinney, H. L. 2004. Role of friction in pattern formation in oscillated granular layers. Phys. Rev. E 69, 3 (Mar), 031301.Google ScholarGoogle ScholarCross RefCross Ref
  45. Moreau, J. J. 1983. Unilateral Problems in Structural Analysis. International Centre for Mechanical Sciences, Courses and Lectures - No. 288. ch. Standard Inelastic Shocks and the Dynamics of Unilateral Constraints., 173--221.Google ScholarGoogle Scholar
  46. Moreau, J. J. 1988. Unilateral Contact and Dry Friction in Finite Freedom Dynamics. Nonsmooth Mechanics and Applications, CISM Courses and Lectures, 302, 1--82.Google ScholarGoogle Scholar
  47. Moser, and Veselov. 1991. Discrete Versions of Some Classical Integrable Systems and Factorization of Matrix Polynomials. Communications in Mathematical Physics 139, 2, 217--243.Google ScholarGoogle ScholarCross RefCross Ref
  48. Narain, R., Golas, A., and Lin, M. C. 2010. Free-Flowing Granular Materials with Two-Way Solid Coupling. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Pöschel, T., and Schwager, T. 2005. Computational granular dynamics: models and algorithms. Springer-Verlag.Google ScholarGoogle Scholar
  50. Pudasaini, S. P., and Kröner, C. 2008. Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results. Phys. Rev. E 78 (Oct), 041308.Google ScholarGoogle ScholarCross RefCross Ref
  51. Schittkowski, K. 2005. QL: A Fortran code for convex quadratic programming - User's guide, Version 2.11. Report, Department of Mathematics, University of Bayreuth.Google ScholarGoogle Scholar
  52. Smith, R. 2006. Open Dynamics Engine, V0.5, User Guide.Google ScholarGoogle Scholar
  53. Stewart, D. E. 2000. Rigid-Body Dynamics with Friction and Impact. SIAM Rev. 42, 1, 3--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Umbanhowar, P. B., Melo, F., and Swinney, H. L. 1996. Localized excitations in a vertically vibrated granular layer. Nature 382 (8/1996), 793--796.Google ScholarGoogle Scholar
  55. van der Weele, K., van der Meer, D., Versluis, M., and Lohse, D. 2001. Hysteretic clustering in granular gas. EPL (Europhysics Letters) 53, 3, 328.Google ScholarGoogle Scholar
  56. Wächter, A., and Biegler, L. T. 2006. On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming. Mathematical Programming 106, 25--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Witkin, A., and Baraff, D. 2001. Physically Based Modeling. In SIGGRAPH 2001 COURSE NOTES.Google ScholarGoogle Scholar
  58. Zhong, G., and Marsden, J. E. 1988. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Physics Letters A 133, 3 (Nov), 134--139.Google ScholarGoogle ScholarCross RefCross Ref
  59. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH 05) 24 (July), 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Reflections on simultaneous impact

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader