skip to main content
research-article

Global parametrization by incremental flattening

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Global parametrization of surfaces requires singularities (cones) to keep distortion minimal. We describe a method for finding cone locations and angles and an algorithm for global parametrization which aim to produce seamless parametrizations with low metric distortion. The idea of the method is to evolve the metric of the surface, starting with the original metric so that a growing fraction of the area of the surface is constrained to have zero Gaussian curvature; the curvature becomes gradually concentrated at a small set of vertices which become cones. We demonstrate that the resulting parametrizations have significantly lower metric distortion compared to previously proposed methods.

Skip Supplemental Material Section

Supplemental Material

tp214_12.mp4

References

  1. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Computer Graphics Forum 27, 2, 449--458.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bunin, G. 2008. A continuum theory for unstructured mesh generation in two dimensions. CAGD 25, 14--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Carr, N., Hoberock, J., Crane, K., and Hart, J. 2006. Rectangular multi-chart geometry images. In Symposium on Geometry Processing, Eurographics Association, 190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4 (July), 38:1--38:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35 (October), 22:1--22:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Computer Graphics Forum 29, 5 (July), 1525--1533.Google ScholarGoogle ScholarCross RefCross Ref
  8. Daniels, J., Silva, C. T., and Cohen, E. 2009. Localized quadrilateral coarsening. Computer Graphics Forum 28, 5, 1437--1444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Daniels II, J., Silva, C. T., and Cohen, E. 2009. Semiregular quadrilateralonly remeshing from simplified base domains. Computer Graphics Forum 28, 5 (July), 1427--1435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dong, S., Bremer, P., Garland, M., Pascucci, V., and Hart, J. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. SIGGRAPH 1995, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Erickson, J., and Whittlesey, K. 2005. Greedy optimal homotopy and homology generators. In Proc. ACM-SIAM Symposium on Discrete Algorithms, 1046. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gu, X., and Yau, S.-T. 2003. Global conformal surface parameterization. In Proc. 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP '03, 127--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gu, X., Gortler, S., and Hoppe, H. 2002. Geometry images. ACM Trans. Graph. 21, 3, 355--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In SIGGRAPH 2000, 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hormann, K., Lévy, B., and Sheffer, A. 2007. Mesh parameterization: Theory and practice. SIGGRAPH Course Notes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jin, M., Wang, Y., Yau, S., and Gu, X. 2004. Optimal global conformal surface parameterization. In Proc. IEEE Visualization'04, 267--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jin, M., Kim, J., Luo, F., and Gu, X. 2008. Discrete surface ricci flow. IEEE Trans. Visualization and Computer Graphics 14, 1030--1043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface Parameterization using Branched Coverings. Computer Graphics Forum 26, 3, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kharevych, L., Springborn, B., and Schröder, P. 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25 (April), 412--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kovacs, D., Myles, A., and Zorin, D. 2011. Anisotropic quadrangulation. Computer Aided Geometric Design 28, 8, 449--462. Solid and Physical Modeling 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lai, Y., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S., and Gu, X. 2009. Metric-driven rosy field design and remeshing. IEEE Trans. Visualization and Computer Graphics, 95--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. In SIGGRAPH 1998, 95--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Liu, L., Zhang, L., Xu, Y, Gotsman, C, and Gortler, S. J. 2008. A Local/Global approach to mesh parameterization. Computer Graphics Forum 27, 5 (July), 1495--1504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Marinov, M., and Kobbelt, L. 2005. Automatic generation of structure preserving multiresolution models. Computer Graphics Forum 24, 3 (Sept.), 479--486.Google ScholarGoogle ScholarCross RefCross Ref
  28. Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. 2010. Feature-aligned T-meshes. ACM Trans. Graph. 29, 4, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pietroni, N., Tarini, M., and Cignoni, P. 2009. Almost isometric mesh parameterization through abstract domains. IEEE Trans. Visualization and Computer Graphics 99, RapidPosts. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-Symmetry direction field design. ACM Trans. Graph. 27, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Foundations and Trends® in Computer Graphics and Vision 2, 2, 171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In Proc. IEEE Visualization '02, 355--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27 (August), 77:1--77:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. 2010. Practical quad mesh simplification. Computer Graphics Forum 29, 2.Google ScholarGoogle ScholarCross RefCross Ref
  38. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. Symposium on Geometry Processing, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Global parametrization by incremental flattening

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader