Abstract
Global parametrization of surfaces requires singularities (cones) to keep distortion minimal. We describe a method for finding cone locations and angles and an algorithm for global parametrization which aim to produce seamless parametrizations with low metric distortion. The idea of the method is to evolve the metric of the surface, starting with the original metric so that a growing fraction of the area of the surface is constrained to have zero Gaussian curvature; the curvature becomes gradually concentrated at a small set of vertices which become cones. We demonstrate that the resulting parametrizations have significantly lower metric distortion compared to previously proposed methods.
Supplemental Material
- Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Computer Graphics Forum 27, 2, 449--458.Google Scholar
Cross Ref
- Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google Scholar
Digital Library
- Bunin, G. 2008. A continuum theory for unstructured mesh generation in two dimensions. CAGD 25, 14--40. Google Scholar
Digital Library
- Carr, N., Hoberock, J., Crane, K., and Hart, J. 2006. Rectangular multi-chart geometry images. In Symposium on Geometry Processing, Eurographics Association, 190. Google Scholar
Digital Library
- Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4 (July), 38:1--38:6. Google Scholar
Digital Library
- Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35 (October), 22:1--22:14. Google Scholar
Digital Library
- Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Computer Graphics Forum 29, 5 (July), 1525--1533.Google Scholar
Cross Ref
- Daniels, J., Silva, C. T., and Cohen, E. 2009. Localized quadrilateral coarsening. Computer Graphics Forum 28, 5, 1437--1444. Google Scholar
Digital Library
- Daniels II, J., Silva, C. T., and Cohen, E. 2009. Semiregular quadrilateralonly remeshing from simplified base domains. Computer Graphics Forum 28, 5 (July), 1427--1435. Google Scholar
Digital Library
- Dong, S., Bremer, P., Garland, M., Pascucci, V., and Hart, J. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057--1066. Google Scholar
Digital Library
- Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. SIGGRAPH 1995, 173--182. Google Scholar
Digital Library
- Erickson, J., and Whittlesey, K. 2005. Greedy optimal homotopy and homology generators. In Proc. ACM-SIAM Symposium on Discrete Algorithms, 1046. Google Scholar
Digital Library
- Gu, X., and Yau, S.-T. 2003. Global conformal surface parameterization. In Proc. 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP '03, 127--137. Google Scholar
Digital Library
- Gu, X., Gortler, S., and Hoppe, H. 2002. Geometry images. ACM Trans. Graph. 21, 3, 355--361. Google Scholar
Digital Library
- Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In SIGGRAPH 2000, 517--526. Google Scholar
Digital Library
- Hormann, K., Lévy, B., and Sheffer, A. 2007. Mesh parameterization: Theory and practice. SIGGRAPH Course Notes. Google Scholar
Digital Library
- Jin, M., Wang, Y., Yau, S., and Gu, X. 2004. Optimal global conformal surface parameterization. In Proc. IEEE Visualization'04, 267--274. Google Scholar
Digital Library
- Jin, M., Kim, J., Luo, F., and Gu, X. 2008. Discrete surface ricci flow. IEEE Trans. Visualization and Computer Graphics 14, 1030--1043. Google Scholar
Digital Library
- Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface Parameterization using Branched Coverings. Computer Graphics Forum 26, 3, 375--384.Google Scholar
Cross Ref
- Kharevych, L., Springborn, B., and Schröder, P. 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25 (April), 412--438. Google Scholar
Digital Library
- Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350--357. Google Scholar
Digital Library
- Kovacs, D., Myles, A., and Zorin, D. 2011. Anisotropic quadrangulation. Computer Aided Geometric Design 28, 8, 449--462. Solid and Physical Modeling 2010. Google Scholar
Digital Library
- Lai, Y., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S., and Gu, X. 2009. Metric-driven rosy field design and remeshing. IEEE Trans. Visualization and Computer Graphics, 95--108. Google Scholar
Digital Library
- Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. In SIGGRAPH 1998, 95--104. Google Scholar
Digital Library
- Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3, 362--371. Google Scholar
Digital Library
- Liu, L., Zhang, L., Xu, Y, Gotsman, C, and Gortler, S. J. 2008. A Local/Global approach to mesh parameterization. Computer Graphics Forum 27, 5 (July), 1495--1504. Google Scholar
Digital Library
- Marinov, M., and Kobbelt, L. 2005. Automatic generation of structure preserving multiresolution models. Computer Graphics Forum 24, 3 (Sept.), 479--486.Google Scholar
Cross Ref
- Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. 2010. Feature-aligned T-meshes. ACM Trans. Graph. 29, 4, 1--11. Google Scholar
Digital Library
- Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55. Google Scholar
Digital Library
- Pietroni, N., Tarini, M., and Cignoni, P. 2009. Almost isometric mesh parameterization through abstract domains. IEEE Trans. Visualization and Computer Graphics 99, RapidPosts. Google Scholar
Digital Library
- Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google Scholar
Digital Library
- Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-Symmetry direction field design. ACM Trans. Graph. 27, 2. Google Scholar
Digital Library
- Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1--11. Google Scholar
Digital Library
- Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Foundations and Trends® in Computer Graphics and Vision 2, 2, 171. Google Scholar
Digital Library
- Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In Proc. IEEE Visualization '02, 355--362. Google Scholar
Digital Library
- Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27 (August), 77:1--77:11. Google Scholar
Digital Library
- Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. 2010. Practical quad mesh simplification. Computer Graphics Forum 29, 2.Google Scholar
Cross Ref
- Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. Symposium on Geometry Processing, 201--210. Google Scholar
Digital Library
Index Terms
Global parametrization by incremental flattening
Recommendations
Global parametrization of range image sets
SA '11: Proceedings of the 2011 SIGGRAPH Asia ConferenceWe present a method to globally parameterize a surface represented by height maps over a set of planes (range images). In contrast to other parametrization techniques, we do not start with a manifold mesh. The parametrization we compute defines a ...
Local parametrization of cubic surfaces
Algebraic surfaces-which are frequently used in geometric modelling-are represented either in implicit or parametric form. Several techniques for parametrizing a rational algebraic surface as a whole exist. However, in many applications, it suffices to ...
Global parametrization of range image sets
We present a method to globally parameterize a surface represented by height maps over a set of planes (range images). In contrast to other parametrization techniques, we do not start with a manifold mesh. The parametrization we compute defines a ...





Comments