skip to main content
research-article

Dual loops meshing: quality quad layouts on manifolds

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present a theoretical framework and practical method for the automatic construction of simple, all-quadrilateral patch layouts on manifold surfaces. The resulting layouts are coarse, surface-embedded cell complexes well adapted to the geometric structure, hence they are ideally suited as domains and base complexes for surface parameterization, spline fitting, or subdivision surfaces and can be used to generate quad meshes with a high-level patch structure that are advantageous in many application scenarios. Our approach is based on the careful construction of the layout graph's combinatorial dual. In contrast to the primal this dual perspective provides direct control over the globally interdependent structural constraints inherent to quad layouts. The dual layout is built from curvature-guided, crossing loops on the surface. A novel method to construct these efficiently in a geometry- and structure-aware manner constitutes the core of our approach.

Skip Supplemental Material Section

Supplemental Material

tp215_12.mp4

References

  1. Boier-Martin, I. M., Rushmeier, H. E., and Jin, J. 2004. Parameterization of triangle meshes over quadrilateral domains. In Proc. SGP '04, 197--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bommes, D., Vossemer, T., and Kobbelt, L. 2008. Quadrangular parameterization for reverse engineering. Mathematical Methods for Curves and Surfaces, 55--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. In Proc. SIGGRAPH 2009, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bommes, D., Lempfer, T., and Kobbelt, L. 2011. Global structure optimization of quadrilateral meshes. Computer Graphics Forum 30, 2, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  5. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. In Proc. SIGGRAPH 2004, 905--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Daniels, J., Silva, C. T., Shepherd, J., and Cohen, E. 2008. Quadrilateral mesh simplification. ACM Trans. Graph. 27, 5, 148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Daniels, J., Silva, C. T., and Cohen, E. 2009. Semi-regular quadrilateral-only remeshing from simplified base domains. Comput. Graph. Forum 28, 5, 1427--1435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. 2006. Spectral surface quadrangulation. In Proc. SIGGRAPH 2006, 1057--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Eck, M., and Hoppe, H. 1996. Automatic reconstruction of b-spline surfaces of arbitrary topological type. In Proc. SIGGRAPH 96, 325--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Eppstein, D., Goodrich, M. T., Kim, E., and Tamstorf, R. 2008. Motorcycle Graphs: Canonical Quad Mesh Partitioning. Computer Graphics Forum 27, 5, 1477--1486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Erickson, J., and Whittlesey, K. 2005. Greedy optimal homotopy and homology generators. In Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, 1038--1046. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. 2008. Spectral quadrangulation with orientation and alignment control. ACM Trans. Graph. 27, 5, 147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ji, Z., Liu, L., and Wang, Y. 2010. B-mesh: A modeling system for base meshes of 3d articulated shapes. In Proc. Pacific Graphics '10, 2169--2178.Google ScholarGoogle Scholar
  14. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-cover - surface parameterization using branched coverings. Computer Graphics Forum 26, 3, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kovacs, D., Myles, A., and Zorin, D. 2011. Anisotropic quadrangulation. Comp. Aided Geom. Design 28, 8, 449--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Krishnamurthy, V., and Levoy, M. 1996. Fitting smooth surfaces to dense polygon meshes. In Proc. SIGGRAPH 96, 313--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lai, Y.-K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S.-M., and Gu, X. 2010. Metric-driven rosy field design and remeshing. IEEE Trans. Vis. Comput. Graph. 16, 1, 95--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Marinov, M., and Kobbelt, L. 2004. Direct anisotropic quad-dominant remeshing. In Proc. Pacific Graphics '04, 207--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Müller-Hannemann, M. 1998. Hexahedral mesh generation by successive dual cycle elimination. In Int. Meshing Roundtable 98, 379--393.Google ScholarGoogle Scholar
  20. Murdoch, P., Benzley, S., Blacker, T., and Mitchell, S. A. 1997. The spatial twist continuum: a connectivity based method for representing all-hexahedral finite element meshes. Finite Elem. Anal. Des. 28, 137--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. 2010. Feature-aligned T-meshes. In Proc. SIGGRAPH 2010, 117:1--117:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. In Proc. SIGGRAPH 2007, 55:1--55:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Panozzo, D., Puppo, E., Tarini, M., Pietroni, N., and Cignoni, P. 2011. Automatic construction of quad-based subdivision surfaces using fitmaps. IEEE Trans. Vis. Comput. Graph. 17, 10, 1510--1520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 10:1--10:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1:1--1:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schmidt, R., Grimm, C., and Wyvill, B. 2006. Interactive decal compositing with discrete exponential maps. In Proc. SIGGRAPH 2006, 605--613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sethian, J. A., and Vladimirsky, A. 2003. Ordered upwind methods for static hamilton-jacobi equations: Theory and algorithms. SIAM J. Numerical Analysis 41, 1, 325--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tarini, M., Hormann, K., Cignoni, P., and Montani, C. 2004. Polycube-maps. In Proc. SIGGRAPH 2004, 853--860. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and Cignoni, P. 2011. Simple quad domains for field aligned mesh parametrization. Proc. SIGGRAPH Asia 2011 30, 6. Google ScholarGoogle Scholar
  31. Tierny, J., Daniels, J., Nonato, L. G., Pascucci, V., and Silva, C. 2011. Interactive quadrangulation with reeb atlases and connectivity textures. IEEE TVCG 99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Proc. SGP '06, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. A wave-based anisotropic quadrangulation method. In Proc. SIGGRAPH 2010., 118:1--118:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Dual loops meshing: quality quad layouts on manifolds

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader