Abstract
Direction fields, line fields and cross fields are used in a variety of computer graphics applications ranging from non-photorealistic rendering to remeshing. In many cases, it is desirable that fields adhere to symmetry, which is predominant in natural as well as man-made shapes. We present an algorithm for designing smooth N-symmetry fields on surfaces respecting generalized symmetries of the shape, while maintaining alignment with local features. Our formulation for constructing symmetry fields is based on global symmetries, which are given as input to the algorithm, with no isometry assumptions. We explore in detail the properties of generalized symmetries (reflections in particular), and we also develop an algorithm for the robust computation of such symmetry maps, based on a small number of correspondences, for surfaces of genus zero.
Supplemental Material
Available for Download
Supplemental material.
- Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. ACM Trans. Graph. 24 (July), 408--416. Google Scholar
Digital Library
- Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google Scholar
Digital Library
- Bommes, D., Lempfer, T., and Kobbelt, L. 2011. Global structure optimization of quadrilateral meshes. Comput. Graph. Forum 30, 2, 375--384.Google Scholar
Cross Ref
- Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2006. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA 103, 5, 1168--1172.Google Scholar
Cross Ref
- Cailliere, D., Denis, F., Pele, D., and Baskurt, A. 2008. 3d mirror symmetry detection using hough transform. In Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on, IEEE, 1772--1775.Google Scholar
- Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Computer Graphics Forum 29, 5 (July), 1525--1533.Google Scholar
Cross Ref
- Farb, B., and Margalit, D. 2011. A primer on mapping class groups. Princeton Univ Press.Google Scholar
- Ghosh, D., Amenta, N., and Kazhdan, M. 2010. Closed-form blending of local symmetries. Computer Graphics Forum 29, 5, 1681--1688.Google Scholar
Cross Ref
- Golovinskiy, A., Podolak, J., and Funkhouser, T. 2009. Symmetry-aware mesh processing. Mathematics of Surfaces XIII, 170--188. Google Scholar
Digital Library
- Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proceedings of SIGGRAPH 2000, 517--526. Google Scholar
Digital Library
- Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface Parameterization using Branched Coverings. Computer Graphics Forum 26, 3, 375--384.Google Scholar
Cross Ref
- Kazhdan, M., Amenta, N., Gu, S., Wiley, D., and Hamann, B. 2009. Symmetry restoration by stretching. In Canadian Conference on Computational Geometry, Citeseer.Google Scholar
- Kim, V. G., Lipman, Y., Chen, X., and Funkhouser, T. 2010. Mbius Transformations For Global Intrinsic Symmetry Analysis. Computer Graphics Forum 29, 5, 1689--1700.Google Scholar
Cross Ref
- Kim, V. G., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. ACM Trans. Graph. 30 (Aug.), 79:1--79:12. Google Scholar
Digital Library
- Koszul, J. 1965. Lectures on groups of transformations, vol. 32 of Lectures on Mathematics. Tata Institute of Fundamental Research, Bombay, India.Google Scholar
- Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3d models. ACM Transactions on Graphics (Proc. SIGGRAPH 2004). Google Scholar
Digital Library
- Lai, Y., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S., and Gu, X. 2010. Metric-driven rosy field design and remeshing. Visualization and Computer Graphics, IEEE Transactions on 16, 1, 95--108. Google Scholar
Digital Library
- Lipman, Y., Chen, X., Daubechies, I., and Funkhouser, T. 2010. Symmetry factored embedding and distance. In ACM SIGGRAPH 2010 papers, ACM, 1--12. Google Scholar
Digital Library
- Mémoli, F., and Sapiro, G. 2004. Comparing Point Clouds. In Proceedings Symposium on Geometry Processing 2004, Eurographics, 33--42. Google Scholar
Digital Library
- Mitra, N., Guibas, L., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. ACM Transactions on Graphics (TOG) 25, 3, 560--568. Google Scholar
Digital Library
- Mitra, N., Guibas, L., and Pauly, M. 2007. Symmetrization. ACM Transactions on Graphics 26, 3. Google Scholar
Digital Library
- Montgomery, D., and Zippin, L. 1955. Topological transformation groups, vol. 1. Interscience Publishers New York.Google Scholar
- Nieser, M., Palacios, J., Polthier, K., and Zhang, E. 2012. Hexagonal global parameterization of arbitrary surfaces. Visualization and Computer Graphics, IEEE Transactions on 18, 6 (june), 865--878. Google Scholar
Digital Library
- Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. 2002. Shape distributions. ACM Trans. Graph. 21 (October), 807--832. Google Scholar
Digital Library
- Ovsjanikov, M., Sun, J., and Guibas, L. 2008. Global intrinsic symmetries of shapes. Computer graphics forum 27, 5, 1341--1348. Google Scholar
Digital Library
- Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. 2010. One Point Isometric Matching with the Heat Kernel. Computer Graphics Forum 29, 5, 1555--1564.Google Scholar
Cross Ref
- Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55. Google Scholar
Digital Library
- Palacios, J., and Zhang, E. 2011. Interactive visualization of rotational symmetry fields on surfaces. IEEE Transactions on Visualization and Computer Graphics 17, 7 (July), 947--955. Google Scholar
Digital Library
- Peng, C.-H., Zhang, E., Kobayashi, Y., and Wonka, P. 2011. Connectivity editing for quadrilateral meshes. ACM Trans. Graph. 30 (Dec.), 141:1--141:12. Google Scholar
Digital Library
- Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3d shapes. ACM Transactions on Graphics 25, 3, 549--559. Google Scholar
Digital Library
- Podolak, J., Golovinskiy, A., and Rusinkiewicz, S. 2007. Symmetry-enhanced remeshing of surfaces. In Proceedings of the fifth Eurographics symposium on Geometry processing, Eurographics Association, 235--242. Google Scholar
Digital Library
- Praun, E., Sweldens, W., and Schröder, P. 2001. Consistent mesh parameterizations. Proc. of SIGGRAPH 2001. Google Scholar
Digital Library
- Raviv, D., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2007. Symmetries of non-rigid shapes. In Proc. Non-rigid Registration and Tracking (NRTL) workshop. See Proc. of International Conference on Computer Vision (ICCV).Google Scholar
- Raviv, D., Bronstein, A., Bronstein, M., and Kimmel, R. 2010. Full and partial symmetries of non-rigid shapes. International journal of computer vision 89, 1, 18--39. Google Scholar
Digital Library
- Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google Scholar
Digital Library
- Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2. Google Scholar
Digital Library
- Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1--11. Google Scholar
Digital Library
- Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. ACM Transactions on Graphics (Proc. SIGGRAPH). Google Scholar
Digital Library
- Schwerdtfeger, H. 1979. Geometry of complex numbers: circle geometry, Moebius transformation, non-euclidean geometry. Dover Books on Mathematics Series. Dover.Google Scholar
- Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and Cignoni, P. 2011. Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph. 30 (Dec.), 142:1--142:12. Google Scholar
Digital Library
- Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y. 2009. Partial intrinsic reflectional symmetry of 3d shapes. ACM Transactions on Graphics (TOG) 28, 5, 138. Google Scholar
Digital Library
Index Terms
Fields on symmetric surfaces
Recommendations
Geometric modeling with conical meshes and developable surfaces
SIGGRAPH '06: ACM SIGGRAPH 2006 PapersIn architectural freeform design, the relation between shape and fabrication poses new challenges and requires more sophistication from the underlying geometry. The new concept of conical meshes satisfies central requirements for this application: They ...
Geometric modeling with conical meshes and developable surfaces
In architectural freeform design, the relation between shape and fabrication poses new challenges and requires more sophistication from the underlying geometry. The new concept of conical meshes satisfies central requirements for this application: They ...
Geometric Modeling with Conical Meshes and Developable Surfaces
Seminal Graphics Papers: Pushing the Boundaries, Volume 2In architectural freeform design, the relation between shape and fabrication poses new challenges and requires more sophistication from the underlying geometry. The new concept of conical meshes satisfies central requirements for this application: They ...





Comments