skip to main content
research-article

Fields on symmetric surfaces

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

Direction fields, line fields and cross fields are used in a variety of computer graphics applications ranging from non-photorealistic rendering to remeshing. In many cases, it is desirable that fields adhere to symmetry, which is predominant in natural as well as man-made shapes. We present an algorithm for designing smooth N-symmetry fields on surfaces respecting generalized symmetries of the shape, while maintaining alignment with local features. Our formulation for constructing symmetry fields is based on global symmetries, which are given as input to the algorithm, with no isometry assumptions. We explore in detail the properties of generalized symmetries (reflections in particular), and we also develop an algorithm for the robust computation of such symmetry maps, based on a small number of correspondences, for surfaces of genus zero.

Skip Supplemental Material Section

Supplemental Material

tp216_12.mp4

References

  1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. ACM Trans. Graph. 24 (July), 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bommes, D., Lempfer, T., and Kobbelt, L. 2011. Global structure optimization of quadrilateral meshes. Comput. Graph. Forum 30, 2, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2006. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA 103, 5, 1168--1172.Google ScholarGoogle ScholarCross RefCross Ref
  5. Cailliere, D., Denis, F., Pele, D., and Baskurt, A. 2008. 3d mirror symmetry detection using hough transform. In Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on, IEEE, 1772--1775.Google ScholarGoogle Scholar
  6. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Computer Graphics Forum 29, 5 (July), 1525--1533.Google ScholarGoogle ScholarCross RefCross Ref
  7. Farb, B., and Margalit, D. 2011. A primer on mapping class groups. Princeton Univ Press.Google ScholarGoogle Scholar
  8. Ghosh, D., Amenta, N., and Kazhdan, M. 2010. Closed-form blending of local symmetries. Computer Graphics Forum 29, 5, 1681--1688.Google ScholarGoogle ScholarCross RefCross Ref
  9. Golovinskiy, A., Podolak, J., and Funkhouser, T. 2009. Symmetry-aware mesh processing. Mathematics of Surfaces XIII, 170--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proceedings of SIGGRAPH 2000, 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface Parameterization using Branched Coverings. Computer Graphics Forum 26, 3, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  12. Kazhdan, M., Amenta, N., Gu, S., Wiley, D., and Hamann, B. 2009. Symmetry restoration by stretching. In Canadian Conference on Computational Geometry, Citeseer.Google ScholarGoogle Scholar
  13. Kim, V. G., Lipman, Y., Chen, X., and Funkhouser, T. 2010. Mbius Transformations For Global Intrinsic Symmetry Analysis. Computer Graphics Forum 29, 5, 1689--1700.Google ScholarGoogle ScholarCross RefCross Ref
  14. Kim, V. G., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. ACM Trans. Graph. 30 (Aug.), 79:1--79:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Koszul, J. 1965. Lectures on groups of transformations, vol. 32 of Lectures on Mathematics. Tata Institute of Fundamental Research, Bombay, India.Google ScholarGoogle Scholar
  16. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3d models. ACM Transactions on Graphics (Proc. SIGGRAPH 2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lai, Y., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S., and Gu, X. 2010. Metric-driven rosy field design and remeshing. Visualization and Computer Graphics, IEEE Transactions on 16, 1, 95--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lipman, Y., Chen, X., Daubechies, I., and Funkhouser, T. 2010. Symmetry factored embedding and distance. In ACM SIGGRAPH 2010 papers, ACM, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mémoli, F., and Sapiro, G. 2004. Comparing Point Clouds. In Proceedings Symposium on Geometry Processing 2004, Eurographics, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mitra, N., Guibas, L., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. ACM Transactions on Graphics (TOG) 25, 3, 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mitra, N., Guibas, L., and Pauly, M. 2007. Symmetrization. ACM Transactions on Graphics 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Montgomery, D., and Zippin, L. 1955. Topological transformation groups, vol. 1. Interscience Publishers New York.Google ScholarGoogle Scholar
  23. Nieser, M., Palacios, J., Polthier, K., and Zhang, E. 2012. Hexagonal global parameterization of arbitrary surfaces. Visualization and Computer Graphics, IEEE Transactions on 18, 6 (june), 865--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. 2002. Shape distributions. ACM Trans. Graph. 21 (October), 807--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ovsjanikov, M., Sun, J., and Guibas, L. 2008. Global intrinsic symmetries of shapes. Computer graphics forum 27, 5, 1341--1348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. 2010. One Point Isometric Matching with the Heat Kernel. Computer Graphics Forum 29, 5, 1555--1564.Google ScholarGoogle ScholarCross RefCross Ref
  27. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Palacios, J., and Zhang, E. 2011. Interactive visualization of rotational symmetry fields on surfaces. IEEE Transactions on Visualization and Computer Graphics 17, 7 (July), 947--955. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Peng, C.-H., Zhang, E., Kobayashi, Y., and Wonka, P. 2011. Connectivity editing for quadrilateral meshes. ACM Trans. Graph. 30 (Dec.), 141:1--141:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3d shapes. ACM Transactions on Graphics 25, 3, 549--559. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Podolak, J., Golovinskiy, A., and Rusinkiewicz, S. 2007. Symmetry-enhanced remeshing of surfaces. In Proceedings of the fifth Eurographics symposium on Geometry processing, Eurographics Association, 235--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Praun, E., Sweldens, W., and Schröder, P. 2001. Consistent mesh parameterizations. Proc. of SIGGRAPH 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Raviv, D., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2007. Symmetries of non-rigid shapes. In Proc. Non-rigid Registration and Tracking (NRTL) workshop. See Proc. of International Conference on Computer Vision (ICCV).Google ScholarGoogle Scholar
  34. Raviv, D., Bronstein, A., Bronstein, M., and Kimmel, R. 2010. Full and partial symmetries of non-rigid shapes. International journal of computer vision 89, 1, 18--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. ACM Transactions on Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Schwerdtfeger, H. 1979. Geometry of complex numbers: circle geometry, Moebius transformation, non-euclidean geometry. Dover Books on Mathematics Series. Dover.Google ScholarGoogle Scholar
  40. Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and Cignoni, P. 2011. Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph. 30 (Dec.), 142:1--142:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y. 2009. Partial intrinsic reflectional symmetry of 3d shapes. ACM Transactions on Graphics (TOG) 28, 5, 138. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fields on symmetric surfaces

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 4
        July 2012
        935 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2185520
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2012
        Published in tog Volume 31, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader