Abstract
Buoyant turbulent smoke plumes with a sharp smoke-air interface, such as volcanic plumes, are notoriously hard to simulate. The surface clearly shows small-scale turbulent structures which are costly to resolve. In addition, the turbulence onset is directly visible at the interface, and is not captured by commonly used turbulence models. We present a novel approach that employs a triangle mesh as a high-resolution surface representation combined with a coarse Eulerian solver. On the mesh, we solve the interfacial vortex sheet equations, which allows us to accurately simulate buoyancy induced turbulence. For complex boundary conditions we propose an orthogonal turbulence model that handles vortices caused by obstacle interaction. In addition, we demonstrate a re-sampling scheme to remove surfaces that are hidden inside the bulk volume. In this way we are able to achieve highly detailed simulations of turbulent plumes efficiently.
Supplemental Material
Available for Download
Supplemental material.
- Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In ACM SIGGRAPH/EG Symposium on Computer Animation. Google Scholar
Digital Library
- Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Transactions on Graphics 25, 1. Google Scholar
Digital Library
- Brady, M., Leonard, A., and Pullin, D. I. 1998. Regularized vortex sheet evolution in three dimensions. J. Comput. Phys. 146, 520--545. Google Scholar
Digital Library
- Brochu, T., and Bridson, R. 2009. Animating smoke as a surface. SCA posters.Google Scholar
- Chentanez, N., and Mueller, M. 2011. Real-time eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. 30, 82:1--82:10. Google Scholar
Digital Library
- Chorin, A. J., and Bernard, P. S. 1973. Discretization of a vortex sheet on a roll-up. J. Comp. Phys. 13, 423--429.Google Scholar
Cross Ref
- Cowper, G. 1973. Gaussian quadrature formulas for triangles. Int. J. Num. Methods 7, 3, 405--408.Google Scholar
Cross Ref
- Desbrun, M., Meyer, M., Schröder, P., and Barr, A. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. SIGGRAPH, 317--324. Google Scholar
Digital Library
- Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comp. Phys. 183, 83--116. Google Scholar
Digital Library
- Kim, T., Thuerey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid simulation. ACM SIGGRAPH Papers 27, 3 (Aug), Article 6. Google Scholar
Digital Library
- Kim, D., Song, O.-Y., and Ko, H.-S. 2009. Stretching and wiggling liquids. ACM Transactions on Graphics 28, 5, 120. Google Scholar
Digital Library
- Kolluri, R. 2005. Provably good moving least squares. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms, 1008--1018. Google Scholar
Digital Library
- Launder, B. E., and Sharma, D. B. 1974. Applications of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 1031--138.Google Scholar
Cross Ref
- Leonard, A. 1980. Vortex methods for flow simulation. J. Comput. Phys. 37, 289--335.Google Scholar
Cross Ref
- Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. Proceedings of ACM SIGGRAPH, 457--462. Google Scholar
Digital Library
- Lozano, A., Garca-Olivares, A., and Dopazo, C. 1998. The instability growth leading to a liquid sheet breakup. Phys. Fluids 10, 9, 2188--2197.Google Scholar
Cross Ref
- Meng, J. C. S. 1978. The physics of vortex-ring evolution in a stratified and shearing environment. J. Fluid Mech., 3, 455--469.Google Scholar
Cross Ref
- Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-Preserving Integrators for Fluid Animation. ACM SIGGRAPH Papers 28, 3 (Aug), Article 38. Google Scholar
Digital Library
- Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. ACM SIGGRAPH/EG Symposium on Computer Animation. Google Scholar
Digital Library
- Narain, R., Sewall, J., Carlson, M., and Lin, M. C. 2008. Fast animation of turbulence using energy transport and procedural synthesis. ACM SIGGRAPH Asia papers, Article 166. Google Scholar
Digital Library
- Pfaff, T., Thuerey, N., Selle, A., and Gross, M. 2009. Synthetic turbulence using artificial boundary layers. ACM Transactions on Graphics 28, 5, 121:1--121:10. Google Scholar
Digital Library
- Pfaff, T., Thuerey, N., Cohen, J., Tariq, S., and Gross, M. 2010. Scalable fluid simulation using anisotropic turbulence particles. SIGGRAPH Asia papers, 174:1--174:8. Google Scholar
Digital Library
- Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
- Rasmussen, N., Nguyen, D. Q., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. In Proceedings of ACM SIGGRAPH. Google Scholar
Digital Library
- Rosenhead, L. 1931. The formation of vorticies from a surface of discontinuity. Proc. Roy. Soc. London 134, 170--192.Google Scholar
Cross Ref
- Schechter, H., and Bridson, R. 2008. Evolving sub-grid turbulence for smoke animation. In Proceedings of the 2008 ACM/Eurographics Symposium on Computer Animation. Google Scholar
Digital Library
- Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. Proceedings of ACM SIGGRAPH 24, 3, 910--914. Google Scholar
Digital Library
- Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. Journal of Scientific Computing. Google Scholar
Digital Library
- Spalart, P. R., and Allmaras, S. R. 1992. A one-equation turbulence model for aerodynamic flows. AIAA Paper 92, 0439.Google Scholar
- Stam, J., and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In Proceedings of ACM SIGGRAPH. Google Scholar
Digital Library
- Stam, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH. Google Scholar
Digital Library
- Stock, M., Dahm, W., and Tryggvason, G. 2008. Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method. J. Comp. Phys. 227, 9021--9043. Google Scholar
Digital Library
- Tryggvason, G., and Aref, H. 1983. Numerical experiments on hele-shaw flow with a sharp interface. J. Fluid Mech., 1--30.Google Scholar
- Weissmann, S., and Pinkall, U. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Transactions on Graphics 29, 4. Google Scholar
Digital Library
- Wojtan, C., Thuerey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Transactions on Graphics 29, 3 (July), 8. Google Scholar
Digital Library
- Wu, J.-Z. 1995. A theory of three-dimensional interfacial vorticity dynamics. Phys. Fluids 7, 10, 2375--2395.Google Scholar
Cross Ref
- Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. Proceedings of ACM SIGGRAPH 24, 3, 965--972. Google Scholar
Digital Library
Index Terms
Lagrangian vortex sheets for animating fluids
Recommendations
Synthetic turbulence using artificial boundary layers
Turbulent vortices in fluid flows are crucial for a visually interesting appearance. Although there has been a significant amount of work on turbulence in graphics recently, these algorithms rely on the underlying simulation to resolve the flow around ...
A micropolar material model for turbulent SPH fluids
SCA '17: Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer AnimationIn this paper we introduce a novel micropolar material model for the simulation of turbulent inviscid fluids. The governing equations are solved by using the concept of Smoothed Particle Hydrodynamics (SPH). As already investigated in previous works, ...
Synthetic turbulence using artificial boundary layers
SIGGRAPH Asia '09: ACM SIGGRAPH Asia 2009 papersTurbulent vortices in fluid flows are crucial for a visually interesting appearance. Although there has been a significant amount of work on turbulence in graphics recently, these algorithms rely on the underlying simulation to resolve the flow around ...





Comments