skip to main content
research-article

Discrete viscous sheets

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We present the first reduced-dimensional technique to simulate the dynamics of thin sheets of viscous incompressible liquid in three dimensions. Beginning from a discrete Lagrangian model for elastic thin shells, we apply the Stokes-Rayleigh analogy to derive a simple yet consistent model for viscous forces. We incorporate nonlinear surface tension forces with a formulation based on minimizing discrete surface area, and preserve the quality of triangular mesh elements through local remeshing operations. Simultaneously, we track and evolve the thickness of each triangle to exactly conserve liquid volume. This approach enables the simulation of extremely thin sheets of viscous liquids, which are difficult to animate with existing volumetric approaches. We demonstrate our method with examples of several characteristic viscous sheet behaviors, including stretching, buckling, sagging, and wrinkling.

Skip Supplemental Material Section

Supplemental Material

tp226_12.mp4

References

  1. Ando, R., and Tsuruno, R. 2011. A particle-based method for preserving fluid sheets. In Symposium on Computer Animation, 7--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In SIGGRAPH, vol. 32, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bargteil, A. W., Hodgins, J. K., Wojtan, C., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. (SIGGRAPH) 26, 3, 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.Google ScholarGoogle Scholar
  5. Batty, C., and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Symposium on Computer Animation, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Batty, C., and Houston, B. 2011. A simple finite volume method for adaptive viscous liquids. In Symposium on Computer Animation, 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Benjamin, T. B., and Mullin, T. 1988. Buckling instabilities in layers of viscous liquid subjected to shearing. J. Fluid Mech.1 195, 523--540.Google ScholarGoogle Scholar
  8. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. Graph. (SIGGRAPH) 27, 3, 63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads. ACM Trans. Graph. (SIGGRAPH) 29, 4, 116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bertails, F., Audoly, B., Cani, M.-P., Leroy, F., Querleux, B., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. (SIGGRAPH) 25, 3 (July), 1180--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Symposium on Computer Animation, Eurographics Association, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Bridson, R. 2008. Fluid Simulation for Computer Graphics. A. K. Peters, Ltd. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. (SIGGRAPH) 29, 4, 47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Buckmaster, J. D., A. Nachman, and Ting, L. 1975. The buckling and stretching of a viscida. J. Fluid Mech. 69, 1, 1--20.Google ScholarGoogle ScholarCross RefCross Ref
  16. Carlson, M., Mucha, P. J., Van Horn, R., and Turk, G. 2002. Melting and flowing. In Symposium on Computer Animation, 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Symposium on Computer Animation, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. da Silveira, R., Chaieb, S., and Mahadevan, L. 2000. Rippling instability of a collapsing bubble. Science 287, 5457, 1468--1471.Google ScholarGoogle Scholar
  19. English, R. E., and Bridson, R. 2008. Animating developable surfaces using nonconforming elements. ACM Trans. Graph. (SIGGRAPH) 27, 3, 66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Erleben, K., Misztal, M., and Baerentzen, A. 2011. Mathematical foundation of the optimization-based fluid animation method. In Symposium on Computer Animation, 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic shells. In Symposium on Computer Animation, 91--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A discrete model for inelastic deformation of thin shells. Tech. rep., New York University.Google ScholarGoogle Scholar
  23. Grinspun, E., Hirani, A. N., Schröder, P., and Desbrun, M. 2003. Discrete shells. In Symposium on Computer Animation, Eurographics Association, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hasegawa, S., and Fujii, N. 2003. Real-time rigid body simulation based on volumetric penalty method. In HAPTICS 2003, 326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Howell, P. D. 1996. Models for thin viscous sheets. European Journal of Applied Mathematics 7, 321--343.Google ScholarGoogle ScholarCross RefCross Ref
  26. Hutchinson, D., Preston, M., and Hewitt, T. 1996. Adaptive refinement for mass/spring simulations. In Eurographics Workshop on Computer Animation and Simulation, 31--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In SIGGRAPH, 49--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kharevych, L., Yang, W., Tong, Y., Kanso, E., Marsden, J. E., Schröder, P., and Desbrun, M. 2006. Geometric, variational integrators for computer animation. In Symposium on Computer Animation, 43--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. (SIGGRAPH) 29, 4, 39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Misztal, M., Bridson, R., Erleben, K., Baerentzen, A., and Anton, F. 2010. Optimization-based fluid simulation on unstructured meshes. In VRIPHYS.Google ScholarGoogle Scholar
  31. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Symposium on Computer Animation, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point-based animation of elastic, plastic, and melting objects. In Symposium on Computer Animation, 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4, 809--836.Google ScholarGoogle ScholarCross RefCross Ref
  34. Pai, D. K. 2002. STRANDS: Interactive simulation of thin solids using Cosserat models. Computer Graphics Forum (Eurographics) 21, 3, 347--352.Google ScholarGoogle ScholarCross RefCross Ref
  35. Pearson, J. R. A., and Petrie, C. J. S. 1970. The flow of a tubular film. Part 1: Formal mathematical representation. J. Fluid Mech. 40, 1, 1--19.Google ScholarGoogle ScholarCross RefCross Ref
  36. Radovitzky, R., and Ortiz, M. 1999. Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng 172, 1--4, 203--240.Google ScholarGoogle ScholarCross RefCross Ref
  37. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Symposium on Computer Animation, 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Rayleigh, J. W. S. 1945. Theory of Sound, vol. 2. Dover Publications.Google ScholarGoogle Scholar
  39. Ribe, N. 2001. Bending and stretching of thin viscous sheets. Journal of Fluid Mechanics 433, 135--160.Google ScholarGoogle ScholarCross RefCross Ref
  40. Ribe, N. 2002. A general theory for the dynamics of thin viscous sheets. J. Fluid Mech. 457, 255--283.Google ScholarGoogle ScholarCross RefCross Ref
  41. Ribe, N. 2003. Periodic folding of viscous sheets. Physical Review E 68, 3, 036305.Google ScholarGoogle ScholarCross RefCross Ref
  42. Savva, N. 2007. Viscous fluid sheets. PhD thesis, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  43. Skorobogatiy, M., and Mahadevan, L. 2000. Folding of viscous sheets and filaments. Europhysics Letters 52, 5, 532--538.Google ScholarGoogle ScholarCross RefCross Ref
  44. Spillman, J., and Teschner, M. 2007. CORDE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Symposium on Computer Animation, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Stokes, G. G. 1845. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society. Vol. 8.Google ScholarGoogle Scholar
  46. Teichman, J., and Mahadevan, L. 2003. The viscous catenary. Journal of Fluid Mechanics 478, 71--80.Google ScholarGoogle ScholarCross RefCross Ref
  47. Teichmann, J. A. 2002. Wrinkling and sagging viscous sheets. PhD thesis, MIT.Google ScholarGoogle Scholar
  48. Villard, J., and Borouchaki, H. 2005. Adaptive meshing for cloth animation. Engineering with Computers 20, 4, 333--341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph. (SIGGRAPH Asia) 29, 6, 156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wicke, M., Steinemann, D., and Gross, M. 2005. Efficient animation of point-sampled thin shells. Computer Graphics Forum (Eurographics) 24, 3, 667--676.Google ScholarGoogle ScholarCross RefCross Ref
  51. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. (SIGGRAPH) 29, 4, 49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. (SIGGRAPH) 27, 3, 47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Wojtan, C., Thuerey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Trans. Graph. (SIGGRAPH) 28, 3, 76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Wojtan, C., Thuerey, N., Gross, M., and Turk, G. 2010. Physically-inspired topology changes for thin fluid features. ACM Trans. Graph. (SIGGRAPH) 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Yang, H. T. Y., Saigal, S., Masud, A., and Kapania, R. K. 2000. A survey of recent shell finite elements. Int. J. Numer. Methods Eng., 47, 101--127.Google ScholarGoogle ScholarCross RefCross Ref
  56. Zhang, D., and Yuen, M. M. F. 2001. Cloth simulation using multilevel meshes. Computers and Graphics 25, 3, 383--389.Google ScholarGoogle ScholarCross RefCross Ref
  57. Zhang, Y., Wang, H., Wang, S., Tong, Y., and Zhou, K. 2011. A deformable surface model for real-time water drop animation. IEEE TVCG 99. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Discrete viscous sheets

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 4
      July 2012
      935 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2185520
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2012
      Published in tog Volume 31, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader