10.1145/220346.220360acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article
Free Access

A simplified method of recognizing zero among elementary constants

Published:01 April 1995Publication History
First page image

References

  1. B. F. Caviness, On canonical forms and simplification, Journal of the ACM, vol 17, no 2, April 1970, pp 385-396 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Richardson, Some undecidable problems involving elementary functions of a real variable, Journal of Symbolic Logic, 1968, pp 514-520Google ScholarGoogle Scholar
  3. J. Ax, Schanuel's Conjecture, Ann Math 93 (1971), 252- 68Google ScholarGoogle ScholarCross RefCross Ref
  4. A. Baker, Transcendental Number Theory, Cambridge University Press, 1975Google ScholarGoogle Scholar
  5. B. F. Caviness and M. J. Prelle, A note on algebraic independence of logarithmic and exponential constants, SIGSAM Bulletin, vol 12, no 2, pp 18-20, 1978 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cronin, J., Fixed Points and Topological Degree in Nonlinear Analysis, American Mathematical Society, 1964Google ScholarGoogle Scholar
  7. Ferguson, H.R.P., and R.W. Forcade, Multidimensional Euclidean Algorithms, J. Reine Ange. Math. 33, (1982), pp 171-181Google ScholarGoogle Scholar
  8. N. C. Lloyd, Degree Theory, Cambridge University Press, 1978Google ScholarGoogle Scholar
  9. J. Hastad, B. Just, j.C. Lagarias, C. P. Schnorr, Polynomial time algorithms for finding integer relations among real numbers, Procedings of STACS '86, Lecture Notes in Computer Science Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. G. Khovanskii, Fewnomials, AMS Translation Mathematical monographs; v 88, AMS, Providence, RI, 1991. (Russian Original: Malochleny, Moscow 1987).Google ScholarGoogle Scholar
  11. A.K. Lenstra, H. W. Lenstra, L. Lovasz, Factoring Polynomials with rational coefficients. Math Ann 261, pp 513- 534Google ScholarGoogle Scholar
  12. T. Leinekugel, Etre ou ne pas etre zero, report on work done at Bath University in summer 1994Google ScholarGoogle Scholar
  13. A.J. Macintyre and A.J. Wilkie, On the decidability of the real exponential field, preprint, Mathematical Institute, Oxford.Google ScholarGoogle Scholar
  14. M. Mignotte, Mathematics for Computer Algebra, Springer Verlag, 1991 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Pohst, A Modification of the LLL Reduction Algorithm, J. Symbolic Computation (1987) 4, pp 123-127 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Rabinowitz (Ed), Numerical Methods for Nonlinear Algebraic Equations, Gordon and Breach, 1970Google ScholarGoogle Scholar
  17. D. Richardson, Finding roots of equations involving solutions of first order algebraic differential equations, pp 427- 440 in Effective Methods in Algebraic Geometry, (Teo Mora and Carlo Traverso Eds), Birkhauser 1991Google ScholarGoogle Scholar
  18. D. Richardson, Computing the topology of a bounded non-algebraic curve in the plane, Journal of Symbolic Computation, 14, 1992, pp 619-643 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Richardson, The Elementary Constant Problem, IS- SAC 92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. Richardson, A zero structure theorem for exponential systems, ISSAC '93 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Richardson and J. P. Fitch, Simplification of Elementary Constants and Functions, ISSAC '94Google ScholarGoogle Scholar
  22. M. Rosenlicht, On Liouville's Theory of Elementary Functions, Pacific Journal of Mathematics, voI 65, no 2, 1976, pp 485-492Google ScholarGoogle Scholar
  23. B. Salvy, Asymptotique Automatique et Fonctions G~nratrices, Thesis, Ecole Polytechnique, 1991Google ScholarGoogle Scholar
  24. J. Shackell, Zero-Equivalence in function fields defined by algebraic differential equations, Trans. of the AMS, vol 336, Number 1, pp 151-171, 1993Google ScholarGoogle Scholar
  25. J. Shackell, A Differential equations approach to functional equivalence, in C. Gonnet, editor, ISSAC '89 Proceedings, pp 7-10, ACM press, Portalnd Oregon, 1989 Google ScholarGoogle Scholar
  26. N. N. Vorobjov, Deciding consistency of systems of polynomial in exponent inequalities in subexponential time, Proceedings of MEGA 90, 1990.Google ScholarGoogle Scholar
  27. S.C. Chou, W. F. Schelter, and J. G. Yang, Characteristic Sets and GrSbner Bases in Geometry Theorem Proving, Draft, Institute for Computing Science, The University of Texas, Austin, TX 78712Google ScholarGoogle Scholar
  28. W. T. Wu, Basic Principles of Mechanical Theorem Proving in Elementary Geometries, J. Sys. Sci. and Math. Scis, f(3), 1984, 207-235Google ScholarGoogle Scholar

Index Terms

  1. A simplified method of recognizing zero among elementary constants

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            ISSAC '95: Proceedings of the 1995 international symposium on Symbolic and algebraic computation
            April 1995
            336 pages
            ISBN:0897916999
            DOI:10.1145/220346

            Copyright © 1995 ACM

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 April 1995

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            Overall Acceptance Rate350of728submissions,48%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader
          About Cookies On This Site

          We use cookies to ensure that we give you the best experience on our website.

          Learn more

          Got it!