skip to main content
research-article

Reflectance model for diffraction

Published:07 September 2012Publication History
Skip Abstract Section

Abstract

We present a novel method of simulating wave effects in graphics using ray-based renderers with a new function: the Wave BSDF (Bidirectional Scattering Distribution Function). Reflections from neighboring surface patches represented by local BSDFs are mutually independent. However, in many surfaces with wavelength-scale microstructures, interference and diffraction requires a joint analysis of reflected wavefronts from neighboring patches. We demonstrate a simple method to compute the BSDF for the entire microstructure, which can be used independently for each patch. This allows us to use traditional ray-based rendering pipelines to synthesize wave effects. We exploit the Wigner Distribution Function (WDF) to create transmissive, reflective, and emissive BSDFs for various diffraction phenomena in a physically accurate way. In contrast to previous methods for computing interference, we circumvent the need to explicitly keep track of the phase of the wave by using BSDFs that include positive as well as negative coefficients. We describe and compare the theory in relation to well-understood concepts in rendering and demonstrate a straightforward implementation. In conjunction with standard raytracers, such as PBRT, we demonstrate wave effects for a range of scenarios such as multibounce diffraction materials, holograms, and reflection of high-frequency surfaces.

Skip Supplemental Material Section

Supplemental Material

tp200_12.mp4

References

  1. Abramowitz, M. and Stegun, I. A. 1965. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publication, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alonso, M. A. 2004. Wigner functions for nonparaxial, arbitrarily polarized electromagnetic wave fields in free space. J. Opt. Soc. Amer. A 21, 11, 2233--2243.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bastiaans, M. 1997. Application of the wigner distribution function in optics. In The Wigner Distribution - Theory and Applications in Signal Processing, Elsevier Science.Google ScholarGoogle Scholar
  4. Bastiaans, M. J. 1977. Frequency-Domain treatment of partial coherence. Optica Acta 24, 3, 261--274.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bastiaans, M. J. 2009. Wigner distribution in optics. In Phase-Space Optics: Fundamenals and Applications, M. Testorf, B. Hennelly, and J. Ojeda-Castañeda, Eds, McGraw-Hill, New York, 1--44.Google ScholarGoogle Scholar
  6. Bastiaans, M. J. and van de Mortel, P. G. J. 1996. Wigner distribution function of a circular aperture. J. Opt. Soc. Am. A 13, 8, 1698--1703.Google ScholarGoogle ScholarCross RefCross Ref
  7. Benton, S. A. 1969. Hologram reconstruction with extended incoherent sources. J. Opt. Soc. Amer. 59, 1545--1546.Google ScholarGoogle Scholar
  8. Chandak, A., Lauterbach, C., Taylor, M., Ren, Z., and Manocha, D. 2008. Ad-frustum: Adaptive frustum tracing for interactive sound propagation. IEEE Trans. Vis. Comput. Graph. 14, 6, 1707--1722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dachsbacher, C., Stamminger, M., Drettakis, G., and Durand, F. 2007. Implicit visibility and antiradiance for interactive global illumination. ACM SIGGRAPH 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Freniere, E. R., Gregory, G. G., and Hassler, R. A. 1999. Edge diffraction in monte carlo ray tracing. Proc. SPIE 3780, 151--157.Google ScholarGoogle Scholar
  11. Goodman, J. W. 1984. Statistical properties of laser speckle patterns. In Laser Spekcle and Related Phenomena, 2nd Ed., J. C. Dainty, Ed., Springer, Chapter 2.Google ScholarGoogle Scholar
  12. Goodman, J. W. 2005. Introduction to Fourier Optics, 3rd ed. Roberts & Co., Englewood, Co.Google ScholarGoogle Scholar
  13. Hoover, B. G. and Gamiz, V. L. 2006. Coherence solution for bidirectional reflectance distribution of surfaces with wavelength-scale statistics. J. Opt. Soc. Amer. A 23, 314--328.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hothersall, D., Chandler-Wilde, S., and Hajmirzae, M. 1991. Efficiency of single noise barriers. J. Sound Vibr. 146, 2.Google ScholarGoogle ScholarCross RefCross Ref
  15. Jensen, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques. Springer, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jensen, H. W. and Christensen, P. H. 1998. Efficient simulation of light transport in scences with participating media using photon maps. In Proceedings of the ACM SIGGRAPH Conference. ACM, 311--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kajiya, J. T. 1986. The rendering equations. In Comput. Graph. 20, 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kouyoumjian, R. and Pathak, P. 1974. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE~11.Google ScholarGoogle Scholar
  19. Lindsay, C. and Agu, E. 2006. Physically-Based real-time diffraction using spherical harmonics. In Advances in Visual Computing, Springer, 505--517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Moravec, H. P. 1981. 3d graphics and the wave theory. In Proceedings of SIGGRAPH . Vol. 15, ACM, 289--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Oh, S. B., Kashyap, S., Garg, R., Chandran, S., and Raskar, R. 2010. Rendering wave effects with augmented light fields. In Proceedings of the EuroGraphics Conference.Google ScholarGoogle Scholar
  22. Pharr, M. and Humphreys, G. 2004. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Plesniak, W. and Halle, M. 2005. Computed holograms and holographic video display of 3d data. In ACM SIGGRAPH Course, ACM, 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rick, T. and Mathar, R. 2007. Fast edge-diffraction-based radio wave propagation model for graphics hardware. In Proceedings of the International ITG-Conference on Antennas. 15--19.Google ScholarGoogle Scholar
  25. Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. 2007. The room acoustic rendering equation. J. Acoust. Soc. Amer. 122, 3, 1624--1635.Google ScholarGoogle ScholarCross RefCross Ref
  26. Stam, J. 1999. Diffraction shaders. In Proceedings of the SIGGRAPH Conference 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sun, Y. 2006. Rendering biological iridescences with RGB-based renderers. ACM Trans. Graph. 25, 1, 100--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sun, Y., Fracchia, F. D., Drew, M. S., and Calvert, T. W. 2000. Rendering iridescent colors of optical disks. In Proceedings of the Eurographics Workshop on Rendering (EGWR). 341--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tannenbaum, D. C., Tannenbaum, P., and Wozny, M. J. 1994. Polarization and birefringency considerations in rendering. In Proceedings of the ACM SIGGRAPH Conference. 221--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Torres, R. R., Svensson, U. P., and Kleiner, M. 2001. Computation of edge diffraction for more accurate room acoustics auralization. Acoust. Soc. Amer. J. 109, 2.Google ScholarGoogle ScholarCross RefCross Ref
  31. Tsingos, N. 2000. A geometrical approach to modeling reflectance functions of diffracting surfaces. Tech. rep.Google ScholarGoogle Scholar
  32. Tsingos, N., Dachsbacher, C., Lefebvre, S., and Dellepiane, M. 2007. Instant sound scattering. In Proceedings of the Eurographics Symposium on Rendering(EGSR). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proceedings of the ACM SIGGRAPH Conference. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Walther, A. 1973. Radiometry and coherence. J. Opti. Soc. Amer. 63, 12, 1622--1623.Google ScholarGoogle ScholarCross RefCross Ref
  35. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. Proc. the SIGGRAPH Conference 26, 2, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Whitted, T. 1980. An improved illumination model for shaded display. Comm. ACM 23, 6, 343--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wolf, E. 1978. Coherence and Radiometry. J. Opti. Soc. Amer. 68, 1, 6--17.Google ScholarGoogle ScholarCross RefCross Ref
  38. Zhang, Z. and Levoy, M. 2009. Wigner distributions and how they relate to the light field. In Proceedings of the IEEE Internatinoal Conference on Computational Photography.Google ScholarGoogle Scholar
  39. Ziegler, R., Bucheli, S., Ahrenberg, L., Magnor, M., and Gross, M. 2007. A bidirectional light field - hologram transform. Comput. Graph. Forum 26, 3, 435--446.Google ScholarGoogle ScholarCross RefCross Ref
  40. Ziegler, R., Croci, S., and Gross, M. H. 2008. Lighting and occlusion in a wave-based framework. Comput. Graph. Forum 27, 2, 211--220.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Reflectance model for diffraction

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 5
          August 2012
          107 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2231816
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 September 2012
          • Accepted: 1 February 2012
          • Revised: 1 December 2011
          • Received: 1 February 2011
          Published in tog Volume 31, Issue 5

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader