skip to main content
research-article

Theory, analysis and applications of 2D global illumination

Published:07 September 2012Publication History
Skip Abstract Section

Abstract

We investigate global illumination in 2D and show how this simplified problem domain leads to practical insights for 3D rendering.

We first derive a full theory of 2D light transport by introducing 2D analogs to radiometric quantities such as flux and radiance, and deriving a 2D rendering equation. We use our theory to show how to implement algorithms such as Monte Carlo raytracing, path tracing, irradiance caching, and photon mapping in 2D, and demonstrate that these algorithms can be analyzed more easily in this domain while still providing insights for 3D rendering.

We apply our theory to develop several practical improvements to the irradiance caching algorithm. We perform a full second-order analysis of diffuse indirect illumination, first in 2D, and then in 3D by deriving the irradiance Hessian, and show how this leads to increased accuracy and performance for irradiance caching. We propose second-order Taylor expansion from cache points, which results in more accurate irradiance reconstruction. We also introduce a novel error metric to guide cache point placement by analyzing the error produced by irradiance caching. Our error metric naturally supports anisotropic reconstruction and, in our preliminary study, resulted in an order of magnitude less error than the “split-sphere” heuristic when using the same number of cache points.

References

  1. Abbott, E. A. 1884. Flatland: A Romance of Many Dimensions. Dover Publications.Google ScholarGoogle Scholar
  2. Annen, T., Kautz, J., Durand, F., and Seidel, H.-P. 2004. Spherical harmonic gradients for mid-range illumination. In Proceedings of the Eurographics Symposium on Rendering. 331--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Arvo, J. 1994. The irradiance jacobian for partially occluded polyhedral sources. In Proceedings of SIGGRAPH Conference. 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Arvo, J. and Kirk, D. B. 1990. Particle transport and image synthesis. In Proceedings of SIGGRAPH Conference. 63--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Arvo, J., Torrance, K., and Smits, B. 1994. A framework for the analysis of error in global illumination algorithms. In Proceedings of SIGGRAPH Conference. 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Christensen, P. H. 1999. Faster photon map global illumination. J. Graph. Tools 4, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Daly, S. 1993. Digital Images and Human Vision. MIT Press, Cambridge, MA. 179--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. 24, 3, 1115--1126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Durand, F., Orti, R., Rivière, S., and Puech, C. 1996. Radiosity in flatland made visibly simple: Using the visibility complex for lighting simulation of dynamic scenes in flatland. In Proceedings of the Symposium on Computational Geometry. V--11--V--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dutré, P., Bala, K., and Bekaert, P. 2006. Advanced Global Illumination, 2 ed. A K Peters. Natick, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Edelsbrunner, H., Overmars, M. H., and Wood, D. 1983. Graphics in flatland: A case study. Adv. Comput. Rese. 1, 35--59.Google ScholarGoogle Scholar
  12. Gortler, S. J., Schröder, P., Cohen, M. F., and Hanrahan, P. 1993. Wavelet radiosity. In Proceedings of SIGGRAPH Conference. 221--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Heckbert, P. 1992. Radiosity in flatland. Comput. Graph. Forum 11, 3, 181--192.Google ScholarGoogle ScholarCross RefCross Ref
  14. Herzog, R., Myszkowski, K., and Seidel, H.-P. 2009. Anisotropic radiance-cache splatting for efficiently computing high-quality global illumination with lightcuts. Comput. Graph. Forum 28, 2, 259--268.Google ScholarGoogle ScholarCross RefCross Ref
  15. Holzschuch, N. 1996. Le contrôle de l'erreur dans la méthode de radiosité hiérarchique. Ph.D. thesis, Université Joseph Fourier (Grenoble I).Google ScholarGoogle Scholar
  16. Holzschuch, N. and Sillion, F. 1995. Accurate computation of the radiosity gradient for constant and linear emitters. In Proceedings of the Eurographics Workshop on Rendering. Springer, 186--195.Google ScholarGoogle Scholar
  17. Holzschuch, N. and Sillion, F. X. 1998. An exhaustive error-bounding algorithm for hierarchical radiosity. Comput. Graph. Forum 17, 4, 197--218.Google ScholarGoogle ScholarCross RefCross Ref
  18. Jarosz, W., Donner, C., Zwicker, M., and Jensen, H. W. 2008a. Radiance caching for participating media. ACM Trans. Graph. 27, 1 7:1--7:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jarosz, W., Zwicker, M., and Jensen, H. W. 2008b. Irradiance gradients in the presence of participating media and occlusions. Comput. Graph. Forum 27, 4, 1087--1096. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kajiya, J. T. 1986. The rendering equation. In Proceedings of SIGGRAPH Conference. 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Křivánek, J., Bouatouch, K., Pattanaik, S., and Zára, J. 2006. Making radiance and irradiance caching practical: Adaptive caching and neighbor clamping. In Proceedings of the Eurographics Symposium on Rendering. 127--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Křivánek, J., Gautron, P., Bouatouch, K., and Pattanaik, S. 2005a. Improved radiance gradient computation. In Proceedings of the Spring Conference on Computer Graphics. 155--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Křivánek, J., Gautron, P., Pattanaik, S., and Bouatouch, K. 2005b. Radiance caching for efficient global illumination computation. IEEE Trans. Vis. Comput. Graph. 11, 5, 550--561. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Larson, G. W. and Shakespeare, R. A. 1998. Rendering with Radiance: The Art and Science of Lighting Visualization. Morgan Kaufmann Publishers Inc. San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Orti, R., Riviére, S., Durand, F., and Puech, C. 1996. Radiosity for dynamic scenes in flatland with the visibility complex. Comput. Graph. Forum 15, 3, 237--248.Google ScholarGoogle ScholarCross RefCross Ref
  27. Pocchiola, M. 1990. Graphics in flatland revisited. In Proceedings of the Scandinavian Workshop on Algorithm Theory (SWAT'90). Lecture Notes in Computer Science, vol. 447, Springer, Berlin, 85--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ramamoorthi, R., Mahajan, D., and Belhumeur, P. 2007. A first-order analysis of lighting, shading, and shadows. ACM Trans. Graph. 26, 1, 2:1--2:21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Reichert, M. C. 1992. A two-pass radiosity method driven by lights and viewer position. M.S. thesis, Cornell University.Google ScholarGoogle Scholar
  30. Shirley, P. S. 1991. Time complexity of monte carlo radiosity. In Proceedings of the Eurographics Conference. 459--465.Google ScholarGoogle Scholar
  31. Tabellion, E. and Lamorlette, A. 2004. An approximate global illumination system for computer generated films. ACM Trans. Graph. 23, 3, 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Veach, E. and Guibas, L. J. 1997. Metropolis light transport. In Proceedings of SIGGRAPH Conference. 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: A scalable approach to illumination. ACM Trans. Graph. 24, 3, 1098--1107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13, 4, 600--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ward, G. J. and Heckbert, P. 1992. Irradiance gradients. In Proceedings of the Eurographics Workshop on Rendering. 85--98.Google ScholarGoogle Scholar
  36. Ward, G. J., Rubinstein, F. M., and Clear, R. D. 1988. A ray tracing solution for diffuse interreflection. In Proceedings of SIGGRAPH Conference. 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Theory, analysis and applications of 2D global illumination

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 5
        August 2012
        107 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2231816
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 September 2012
        • Accepted: 1 March 2012
        • Revised: 1 October 2011
        • Received: 1 February 2011
        Published in tog Volume 31, Issue 5

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader