
- ~ALIZADEH, F. 1995. Interior point methods in semidefinite programming with applications to ~combinatorial optimization. SIAM J. Optimiz. 5, 13-51.Google Scholar
- ~ARORA, S., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. 1992. Proof verification and ~hardness of approximation problems. In Proceedings of the 33rd Annual Symposium on Founda- ~tions of Computer Science. IEEE, New York, pp. 14-23.Google Scholar
- ~BAR-YEHUDA, R., AND EVEN, S. 1981. A linear time approximation algorithm for the weighted ~verllex cover problem. J. Algorithms 2, 198-203.Google Scholar
- ~BARAHONA, F., GRtSTSCHEL, M., JUNGER, M., AND REINELT, G. 1988. An application of combi-natorial optimization to statistical physics and circuit layout design. Oper. Res. 36, 493-513. Google Scholar
- ~BARV!NOK, A. I. 1995. Problems of distance geometry and convex properties of quadratic ~maps. Disc. Computat. Geom. 13, 189-202.Google Scholar
- ~BELLARE, M., GOLDREICH, O., AND SUDAN, M. 1995. Free bits, PCP and non-approximability-- ~Towards tight results. In Proceedings of the 36th Annual Symposium on Foundations of Computer ~Science. IEEE, Los Alamitos, Calif., pp. 422-431. Google Scholar
- ~BERGER, M. 1987. Geometry II. Springer-Verlag, Berlin.Google Scholar
- ~BONDY, J. A., AND MURTY, U. S.R. 1976. Graph Theory with Applications. American Elsevier ~Publishing, New York, N.Y. Google Scholar
- ~BOYD, S., EL GHAOUI, L., FERON, E., AND BALAKRISHNAN, V. 1994. Linear Matrix Inequalities in ~System and Control Theory. SIAM, Philadelphia, Pa.Google Scholar
- ~CHOR, B., AND SUDAN, m. 1995. A geometric approach to betweenness. In Algorithms-ESA '95, ~P. Spirakis, ed. Lecture Notes in Computer Science, vol. 979. Springer-Verlag, New York, ~pp. 227-237. Google Scholar
- ~CHRISTENSEN, J., AND VESTERSTROM, J. 1979. A note on extreme positive definite matrices. ~Math. Annalen, 244:65-68.Google Scholar
- ~DELORME, C., AND POLIAK, S. 1993a. Combinatorial properties and the complexity of a ~max-cut approximation. Europ. J. Combinat. 14, 313-333. Google Scholar
- ~DELORME, C., AND POLJAK, S. 1993b. Laplacian eigenvalues and the maximum cut problem. ~Math. Prog. 62, 557-574. Google Scholar
- ~DELORME, C., AND POLJAK, S. 1993c. The performance of an eigenvalue bound on the max-cut ~problem in some classes of graphs. Disc. Math. 111, 145-156. Google Scholar
- ~EULER, L. 1781. De mensura angulorum solidorum. Petersburg.Google Scholar
- ~FEIGE,. U., AND GOEMANS, M.X. 1995. Approximating the value of two prover proof systems, ~with applications to MAX 2SAT and MAX DICUT. In Proceedings of the 3rd Israel Symposium ~on Theory of Computing and Systems. IEEE Computer Society Press, Los Alamitos, Calif., ~pp. 182-189. Google Scholar
- ~FEmE, U., AND LOVJ. SZ, L. 1992. Two-prover one-round proof systems: Their power and their ~problems. In Proceedings of the 24th Annual ACM Symposium on the Theory of Computing ~(Victoria, S.C., Canada, May 4-6). ACM, New York, pp. 733-744. Google Scholar
- ~FRIEZE, A., AND JERRUM, M. 1996. Improved approximation algorithms for MAX k-CUT and ~MAX BISECTION. Algorithmica, to appear.Google Scholar
- ~GAREY, M., JOHNSON, D., AND STOCKMEYER, L. 1976. Some simplified NP-complete graph ~problems. Theoret. Comput. Sci. 1, 237-267.Google Scholar
- ~GIRARD, A. 1629. De la mesure de la superficie des triangles et polygones sph6riques. Appendix ~to "Invention nouvelle en l'alg~bre". Amsterdam.Google Scholar
- ~GOEMANS, M. X., AND WILLIAMSON, D. P. 1994a. .878-approximation algorithms for MAX ~CUT and MAX 2SAT. In Proceedings of the 26th Annual ACM Symposium on the Theory of ~Computing (Montreal, Que., Canada, May 23-25). ACM, New York, pp. 422-431. Google Scholar
- ~GOEM,~'~S, M. X., AND WILLIAMSON, D.P. 1994b. New 3/4-approximation algorithms for the ~maximum satisfiability problem. SIAM J. Disc. Math. 7, 656-666. Google Scholar
- ~GOLUB, G. H., AND VAN LOAN, C.F. 1983. Matrix Computations. The Johns Hopkins Uniw:r- ~sity Press, Baltimore, Md.Google Scholar
- ~GRONE, R., PIERCE, S., AND WATKINS, W. 1990. Extremal correlation matrices. Lin. Algebra ~Appl. 134, 63-70.Google Scholar
- ~GRtSTSCHEL, M., LOV/~SZ, L., AND SCHRIJVER, A. 1981. The ellipsoid method and its conse- ~quenLces in combinatorial optimization. Combinatorica 1, 169-197.Google Scholar
- ~GR~STSCHEL, M., LOVXSZ, L., AND SCHRIJVER, A. 1988. Geometric Algorithms and Combinatorial ~Optimization. Springer-Verlag, Berlin.Google Scholar
- ~HADLOCK, F. 1975. Finding a maximum cut of a planar graph in polynomial time. SIAM J. ~Comput. 4, 221-225.Google Scholar
- ~HAGLIN, D.J. 1992. Approximating maximum 2-CNF satisfiability. Paral. Proc. Lett. 2, 181-187.Google Scholar
- ~HAGLIN, D. J., AND VENKATESAN, S. M: 1991. Approximation and intractability results for the ~maximum cut problem and its variants. IEEE Trans. Comput. 40, 110-113. Google Scholar
- ~HOCHBAUM, D. S. 1982. Approximation algorithms for the set covering and vertex cover ~problems. SIAM J. Comput. 11, 555-556.Google Scholar
- ~HOFMEISTER, T., AND LEFMANN, H. 1995. A combinatorial design approach to MAXCUT. In ~Proceedings of the 13th Symposium on Theoretical Aspects of Computer Science. To appear. Google Scholar
- ~HOMER, S., AND PEINAr)O, M. A highly parallel implementation of the Goemans/Williamson ~algorithm to approximate MaxCut. Manuscript.Google Scholar
- ~KARGER, D., MOTWANI, R., AND SUDAN, M. 1994. Approximate graph coloring by semidefinite ~programming. In Proceedings of the 35th Annual Symposium on Foundations of Computer ~Science. IEEE, New York, pp. 2-13.Google Scholar
- ~K2XRP, R. M. 1972. Reducibility among combinatorial problems. In Complexity of Computer ~Computations, R. Miller and J. Thatcher, eds. Plenum Press, New York, pp. 85-103.Google Scholar
- ~KNUTH, D.E. 1981. Seminumerical Algorithms. Vol. 2 of The Art of Computer Programming. ~Addison-Wesley, Reading, Mass. Google Scholar
- ~LANCASTER, P., AND TISMENETSKY, M. 1985. The Theory of Matrices. Academic Press, Orlando, ~Fla.Google Scholar
- ~LAURENT, M., AND POLJAK, S. 1996. On the facial structure of the set of correlation matrices. ~SIAM J. Matrix Anal., and Appl. to appear. Google Scholar
- ~LI, C.-K., AND TAM, B.-S. 1994. A note on extreme correlation matrices. SIAM J. Matrix Anal. ~and Appl. J5, 903-908. Google Scholar
- ~LOEWY, R. 1980. Extreme points of a convex subset of the cone of positive definite matrices. ~Math. Annalen. 253, 227-232.Google Scholar
- ~LovAsz, L. 1979. On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT-25, 1-7.Google Scholar
- ~LovAsz, L. 1983. Self-dual polytopes and the chromatic number of distance graphs on the ~sphere. Acta Sci. Math. 45, 317-323.Google Scholar
- ~LovAsz, L. 1992. Combinatorial optimization: Some problems and trends. DIMACS Technical ~Report 92-53.Google Scholar
- ~LovJ. sz, L., AND SCHRIJVER, A. 1989. Matrix cones, projection representations, and stable set ~polyhedra. In Polyhedral Combinatorics, vol. 1 of DIMACS Series in Discrete Mathematics and ~Theoretical Computer Science. American Mathematical Society, Providence, R.I.Google Scholar
- ~Lov/sz, L., AND SCHRIJVER, m. 1990. Cones of matrices and setfunctions, and 0-1 optimiza- ~tion. SIAM J. Optimiz. I, 166-190.Google Scholar
- ~MAHAJAN, S., AND RAMESH, H. 1995. Derandomizing semidefinite programming based approxi- ~mation algorithms. In Proceedings of the 36th Annual Symposium on Foundations of Computer ~Science. IEEE, Los Alamitos, Calif., pp. 162-163. Google Scholar
- ~MOHAR, B., AND POLJAK, S. 1993. Eigenvalue methods in combinatorial optimization. In ~Combinatorial and Graph-Theoretic Problems in Linear Algebra, vol. 50 of The IMA Volumes in ~Mathematics and Its Applications. R. Brualdi, S. Friedland, and V. Klee, eds. Springer-Verlag, ~New York.Google Scholar
- ~NESTEROV, Y., AND NEMIROVSKII, A. 1989. Self-Concordant Functions and Polynomial Time ~Methods in Convex Programming. Central Economic and Mathematical Institute, Academy of ~Science, Moscow, CIS.Google Scholar
- ~NESTEROV, ~., AND NEMIROVSKII, A. 1994. Interior Point Polynomial Methods in Convex ?ro- ~gramming. Society for Industrial and Applied Mathematics, Philadelphia, Pa.Google Scholar
- ~ORLOVA, G. I., AND DORFMAN, Y.G. 1972. Finding the maximal cut in a graph. Eng. Cyber. 10, ~502-506.Google Scholar
- ~OVERTON, M. L., AND WOMERSLEY, R.S. 1992. On the sum of the largest eigenvalues of a ~symmetric matrix. SIAM J. Matrix Anal. and Appl. 13, 41-45. Google Scholar
- ~OVERTON, M. L., AND WOMERSLEY, R.S. 1993. Optimality conditions and duality theory for ~minimizing sums of the largest eigenvalues of symmetric matrices. Math. Prog. 62, 321-357. Google Scholar
- ~PAPADIMtTRIOU, C. H., AND YANNAKAKIS, M. 1991. Optimization, approximation, and complex- ~ity classes. J. Comput. Syst. Sci. 43, 425-440.Google Scholar
- ~PATAKI, G. 1994. On the multiplicity of optimal eigenvalues. Management Science Research ~Report MSRR-604, GSIA. Carnegie-Mellon Univ., Pittsburgh, Pa.Google Scholar
- ~PATAKI, G. 1995. On cone-LP's and semi-definite programs: Facial structure, basic solutions, ~and the simplex method. GSIA Working paper WP 1995-03, Carnegie-Mellon Univ., Pittsburgh, ~Pa.Google Scholar
- ~POLJAK, S., AND RENDL, F. 1994. Node and edge relaxations of the max-cut problem. Comput- ~ing 2;2, 123-137.Google Scholar
- ~POLJAK, S., AND RENDL, F. 1995a. Nonpolyhedral relaxations of graph-bisection problems. ~SIAM J. Optim., to appear.Google Scholar
- ~POLJAK, S., AND RENDL, F. 1995b. Solving the max-cut problem using eigenvalues. Disc. Appl. ~Math. 62, 249-278. Google Scholar
- ~POLJAK, S., AND TURZiK, D. 1982. A polynomial algorithm for constructing a large bipartite ~subgraph, with an application to a satisfiability problem. Can. J. Math. 34, 519-524.Google Scholar
- ~POLJAK, S., AND Tuz^, Z. 1995. Maximum cuts and largest bipartite subgraphs. In Combinato- ~rial Optimization. W. Cook, L. Lovfisz, and P. Seymour, eds. DIMACS series in Discrete ~Mathematics and Theoretical Computer Science, Vol. 20. American Mathematical Society, ~Providence, R.1. To be published.Google Scholar
- ~REINELT, G. 1991. TSPLIB--A traveling salesman problem library. ORSA J. Comput. 3, ~376-384.Google Scholar
- ~RENDL, F., VANDERBEI, R., AND WOLKOWICZ, n. 1993. Interior point methods for max-rain ~eigenvalue problems. Report 264, Technische Universitiit Graz, Graz, Austria.Google Scholar
- ~ROSENFELD, B. 1988. A history of non-Euclidean geometry. Springer-Verlag, Berlin.Google Scholar
- ~SAHNI, S., AND GONZALEZ, T. 1976. P-complete approximation problems. J. ACM 23, 3 (July), ~555-565. Google Scholar
- ~V^IDY^, P. M. 1989. A new algorithm for minimizing convex functions over convex sets. In ~Proceedings of the 30th Annual Symposium on Foundations of Computer Science. IEEE, New ~York:, pp. 338-343.Google Scholar
- VANDENBERGHE, L., AND BOYD, S. 1996. Semidefinite programming. SIAM Rev. To appear. Google Scholar
- VITANYI, P.M. 1981. How well can a graph be n-colored? Disc. Math. 34, 69-80.Google Scholar
- WOLKOWICZ, H. 1981. Some applications of optimization in matrix theory. Lin. Algebra Appl. ~40, 1,01-118.Google Scholar
- ~YANNA~,~KIS, M. 1994. On the approximation of maximum satisfiability. J. Algorithms 17, ~475-:502. Google Scholar
Index Terms
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
Recommendations
Approximation algorithms for the maximum satisfiability problem
The maximum satisfiability problem (MAX SAT) is the following: given a set of clauses with weights, find a truth assignment that maximizes the sum of the weights of the satisfied clauses. In this paper, we present approximation algorithms for MAX SAT, ...
An improved semidefinite programming relaxation for the satisfiability problem
The satisfiability (SAT) problem is a central problem in mathematical logic, computing theory, and artificial intelligence. An instance of SAT is specified by a set of boolean variables and a propositional formula in conjunctive normal form. Given such ...
Convex quadratic and semidefinite programming relaxations in scheduling
We consider the problem of scheduling unrelated parallel machines subject to release dates so as to minimize the total weighted completion time of jobs. The main contribution of this paper is a provably good convex quadratic programming relaxation of ...





Comments