Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues

Published:01 August 2012Publication History
Skip Abstract Section

Abstract

Transmission eigenvalue problem has important applications in inverse scattering. Since the problem is non-self-adjoint, the computation of transmission eigenvalues needs special treatment. Based on a fourth-order reformulation of the transmission eigenvalue problem, a mixed finite element method is applied. The method has two major advantages: 1) the formulation leads to a generalized eigenvalue problem naturally without the need to invert a related linear system, and 2) the nonphysical zero transmission eigenvalue, which has an infinitely dimensional eigenspace, is eliminated. To solve the resulting non-Hermitian eigenvalue problem, an iterative algorithm using restarted Arnoldi method is proposed. To make the computation efficient, the search interval is decided using a Faber-Krahn type inequality for transmission eignevalues and the interval is updated at each iteration. The algorithm is implemented using Matlab. The code can be easily used in the qualitative methods in inverse scattering and modified to compute transmission eigenvalues for other models such as elasticity problem.

Skip Supplemental Material Section

Supplemental Material

References

  1. Argyris, J. H., Fried, I., and Scharpf, D. W. 1968. The TUBA family of plate elements for the matrix displacement method. Aero. J. Roy. Aero. Soc. 72, 701--709.Google ScholarGoogle ScholarCross RefCross Ref
  2. Cakoni, F. and Gintides, D. 2010. New results on transmission eigenvalues. Inverse Prob. Imaging 4, 1, 39--48.Google ScholarGoogle ScholarCross RefCross Ref
  3. Cakoni, F. and Hadder, H. 2009. On the existence of transmission eigenvalues in an inhomogenous medium. Appl. Anal. 88, 4, 475--493.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cakoni, F., Colton, D., Monk, P., and Sun, J. 2010. The inverse electromagnetic scattering problem for anisotropic media. Inverse Problems 26, 7, 074004.Google ScholarGoogle ScholarCross RefCross Ref
  5. Ciarlet, P. G. 2002. The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics 40, SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ciarlet, P. G. and Raviart, P. A. 1974. A mixed finite element method for the biharmonic equation. In Proceedings of the Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations. C. de Boor Ed., Academic Press, New York, 125--145.Google ScholarGoogle Scholar
  7. Colton, D., Päivärinta, L., and Sylvester, J. 2007. The interior transmission problem. Inverse Prob. Imaging 1, 1, 13--28.Google ScholarGoogle ScholarCross RefCross Ref
  8. Colton, D., Monk, P., and Sun, J. 2010. Analytical and computational methods for transmission eigenvalues. Inverse Prob. 26, 4, 045011.Google ScholarGoogle ScholarCross RefCross Ref
  9. Golub, G. H. and Loan, C. F. V. 1989. Matrix Computations 2nd Ed. Johns Hopkins University Press, Baltimore, MD.Google ScholarGoogle Scholar
  10. Hitrik, M., Krupchyk, K., Ola, P., and Päivärinta, L. 2011a. The interior transmission problem and bounds on transmission eigenvalues. Math. Res. Lett. 18, 2, 279--293.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hitrik, M., Krupchyk, K., Ola, P., and Päivärinta, L. 2011b. Transmission eigenvalues for elliptic operators. arXiv:1007.0503 physics.math-ph.Google ScholarGoogle Scholar
  12. Hitrik, M., Krupchyk, K., Ola, P., and Päivärinta, L. 2011c. Transmission eigenvalues for operators with constant coefficients. arXiv:1004.5105 physics.math-ph.Google ScholarGoogle Scholar
  13. Hsiao, G., Liu, F., Sun, J., and Xu, L. 2011. A coupled BEM and FEM for the interior transmission problem in acoustic. J. Comput. Appl. Math. 3235, 17, 5213--5221.Google ScholarGoogle ScholarCross RefCross Ref
  14. Kirsch, A. 2009. On the existence of transmission eigenvalues. Inverse Prob. Imaging 3, 2, 155--172.Google ScholarGoogle ScholarCross RefCross Ref
  15. Monk, P. 1987. A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24, 4, 737--749. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Päivärinta, L. and Sylvester, J. 2008. Transmission eigenvalues. SIAM J. Math. Anal. 40, 2, 738--753.Google ScholarGoogle ScholarCross RefCross Ref
  17. Saad, Y. 1980. Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Linear Algebra Appl. 34, 269--295.Google ScholarGoogle ScholarCross RefCross Ref
  18. Sun, J. 2010. A new family of high regularity elements. Num. Meth. Partial Diff. Eq. 28, 1, 1--16.Google ScholarGoogle Scholar
  19. Sun, J. 2011a. Estimation of transmission eigenvalues and the index of refraction from cauchy data. Inverse Prob. 27, 1, 015009.Google ScholarGoogle ScholarCross RefCross Ref
  20. Sun, J. 2011b. Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49, 5, 1860--1874. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader
        About Cookies On This Site

        We use cookies to ensure that we give you the best experience on our website.

        Learn more

        Got it!