skip to main content
research-article

Analysis and synthesis of point distributions based on pair correlation

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

Analyzing and synthesizing point distributions are of central importance for a wide range of problems in computer graphics. Existing synthesis algorithms can only generate white or blue-noise distributions with characteristics dictated by the underlying processes used, and analysis tools have not been focused on exploring relations among distributions. We propose a unified analysis and general synthesis algorithms for point distributions. We employ the pair correlation function as the basis of our methods and design synthesis algorithms that can generate distributions with given target characteristics, possibly extracted from an example point set, and introduce a unified characterization of distributions by mapping them to a space implied by pair correlations. The algorithms accept example and output point sets of different sizes and dimensions, are applicable to multi-class distributions and non-Euclidean domains, simple to implement and run in O(n) time. We illustrate applications of our method to real world distributions.

References

  1. Alliez, P., Meyer, M., and Desbrun, M. 2002. Interactive geometry remeshing. ACM Trans. Graph. 21, 3, 347--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. ACM Trans. Graph. 28, 3, 86:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Boutin, M., and Kemper, G. 2004. On reconstructing n-point configurations from the distribution of distances or areas. Adv. Appl. Math. 32, 709--735.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boutin, M., and Kemper, G. 2007. Which point configurations are determined by the distribution of their pairwise distances? International Journal of Computational Geometry & Applications 17, 31--43.Google ScholarGoogle ScholarCross RefCross Ref
  5. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., and Prusinkiewicz, P. 1998. Realistic modeling and rendering of plant ecosystems. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH 98, 275--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast poisson-disk sample generation. ACM Trans. Graph. 25 (July), 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ebeida, M. S., Patney, A., Mitchell, S. A., Davidson, A., Knupp, P. M., and Owens, J. D. 2011. Efficient maximal poisson-disk sampling. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. 30, 4 (July), 48:1--48:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gamito, M. N., and Maddock, S. C. 2009. Accurate multidimensional poisson-disk sampling. ACM Trans. Graph. 29 (December), 8:1--8:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D., Eds. 2008. Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley and Sons, Ltd.Google ScholarGoogle Scholar
  12. Jodrey, W. S., and Tlory, E. M. 1985. Computer simulation of close random packing of equal spheres. Phys. Rev. A 32 (Oct), 2347--2351.Google ScholarGoogle ScholarCross RefCross Ref
  13. Jones, T. R. 2006. Efficient generation of poisson-disk sampling patterns. journal of graphics, gpu, and game tools 11, 2, 27--36.Google ScholarGoogle Scholar
  14. Kerscher, M. 2001. Constructing, characterizing, and simulating gaussian and higher-order point distributions. Phys. Rev. E 64 (Oct), 056109.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kim, T., Thürey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27, 3 (Aug.), 50:1--50:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive wang tiles for real-time blue noise. ACM Trans. Graph. 25 (July), 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lagae, A., and Dutré, P. 2006. Poisson sphere distributions. In Vision, Modeling, and Visualization 2006, Akademische Verlagsgesellschaft Aka GmbH, Berlin, L. Kobbelt, T. Kuhlen, T. Aach, and R. Westermann, Eds., 373--379.Google ScholarGoogle Scholar
  18. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1 (March), 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lewis, J. P. 1989. Algorithms for solid noise synthesis. In Proceedings of the 16th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH 89, 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling. ACM Trans. Graph. 29, 6 (Dec.), 167:1--167:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lloyd, S. 1982. Least squares quantization in pcm. Information Theory, IEEE Transactions on 28, 2 (mar), 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ma, C., Wei, L.-Y., and Tong, X. 2011. Discrete element textures. ACM Trans. Graph. 30, 4 (Aug.), 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. McCool, M., and Fiume, E. 1992. Hierarchical poisson disk sampling distributions. In Proceedings of the conference on Graphics interface '92, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 94--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Narain, R., Golas, A., Curtis, S., and Lin, M. C. 2009. Aggregate dynamics for dense crowd simulation. ACM Trans. Graph. 28, 5 (Dec.), 122:1--122:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ohser, J., and Mücklich, F., Eds. 2000. Statistical Analysis of Microstructures in Materials Science. John Wiley and Sons, Ltd.Google ScholarGoogle Scholar
  26. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23 (Aug.), 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pfaff, T., Thuerey, N., Selle, A., and Gross, M. 2009. Synthetic turbulence using artificial boundary layers. ACM Trans. Graph. 28, 5 (Dec.), 121:1--121:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pommerening, A. 2002. Approaches to quantifying forest structures. Forestry 75, 305--324.Google ScholarGoogle ScholarCross RefCross Ref
  29. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, ACM, New York, NY, USA, HPG '11, 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J. 2010. Electrostatic halftoning. Computer Graphics Forum 29, 8, 2313--2327.Google ScholarGoogle ScholarCross RefCross Ref
  31. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24, 3 (July), 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24, 3 (July), 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Torquato, S., Ed. 2002. Random Heterogenous Materials. Microstructure and Macroscopic Properties. Springer-Verlag, New York.Google ScholarGoogle Scholar
  34. Ulichney, R. 1987. Digital halftoning. MIT Press, Cambridge, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30, 4 (July), 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wei, L.-Y. 2008. Parallel poisson disk sampling. ACM Trans. Graph. 27 (August), 20:1--20:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wei, L.-Y. 2010. Multi-class blue noise sampling. ACM Trans. Graph. 29 (July), 79:1--79:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. White, K., Cline, D., and Egbert, P. 2007. Poisson disk point sets by hierarchical dart throwing. In Interactive Ray Tracing, 2007. RT '07. IEEE Symposium on, 129--132. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Analysis and synthesis of point distributions based on pair correlation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 6
        November 2012
        794 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2366145
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 November 2012
        Published in tog Volume 31, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader