Abstract
We present a fast, scalable algorithm to generate high-quality blue noise point distributions of arbitrary density functions. At its core is a novel formulation of the recently-introduced concept of capacity-constrained Voronoi tessellation as an optimal transport problem. This insight leads to a continuous formulation able to enforce the capacity constraints exactly, unlike previous work. We exploit the variational nature of this formulation to design an efficient optimization technique of point distributions via constrained minimization in the space of power diagrams. Our mathematical, algorithmic, and practical contributions lead to high-quality blue noise point sets with improved spectral and spatial properties.
Supplemental Material
Available for Download
Supplemental Materials for
- Aurenhammer, F., Hoffmann, F., and Aronov, B. 1998. Minkowski-type theorems and least-squares clustering. Algorithmica 20, 1, 61--76.Google Scholar
Cross Ref
- Balzer, M., and Heck, D. 2008. Capacity-constrained Voronoi diagrams in finite spaces. In Int. Symp. on Voronoi Diag., 44--56. Google Scholar
Digital Library
- Balzer, M., Deussen, O., and Lewerentz, C. 2005. Voronoi treemaps for the visualization of software metrics. In Symp. on Software Visualization, ACM, 165--172. Google Scholar
Digital Library
- Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. ACM Trans. Graph. (SIGGRAPH) 28, 3, 86:1--8. Google Scholar
Digital Library
- Balzer, M. 2009. Capacity-constrained Voronoi diagrams in continuous spaces. In Int. Symp. on Voronoi Diagrams, 79--88. Google Scholar
Digital Library
- Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using Lagrangian mass transport. ACM Trans. Graph. (SIGGRAPH ASIA) 30, 6. Google Scholar
Digital Library
- Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel Poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29 (Dec.), 166:1--166:10. Google Scholar
Digital Library
- Bridson, R. 2007. Fast Poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH sketches. Google Scholar
Digital Library
- CGAL, 2010. Computational Geometry Algorithms Library (release 3.8). http://www.cgal.org.Google Scholar
- Chen, Z., Yuan, Z., Choi, Y.-K., Liu, L., and Wang, W. 2012. Variational blue noise sampling. IEEE Trans. Vis. Comput. Graphics 18, 10, 1784--1796. Google Scholar
Digital Library
- Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. In ACM SIGGRAPH, 287--294. Google Scholar
Digital Library
- Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72. Google Scholar
Digital Library
- Crow, F. C. 1977. The aliasing problem in computer-generated shaded images. Commun. ACM 20, 11, 799--805. Google Scholar
Digital Library
- Davis, T. A. 2011. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization. ACM Trans. Math. Softw. 38 (Dec.), 8:1--8:22. Google Scholar
Digital Library
- de Goes, F., Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2011. An optimal transport approach to robust reconstruction and simplification of 2d shapes. Computer Graphics Forum 30, 5, 1593--1602.Google Scholar
Cross Ref
- Deussen, O., Hiller, S., Overveld, C., and Strothotte, T. 2000. Floating points: A method for computing stipple drawings. Computer Graphics Forum (EG'00) 19, 3, 40--51.Google Scholar
- Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In ACM SIGGRAPH, 69--78. Google Scholar
Digital Library
- Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi Tessellations: Applications and algorithms. SIAM Rev. 41 (Dec.), 637--676. Google Scholar
Digital Library
- Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. ACM Trans. Graph. 25, 3 (July), 503--508. Google Scholar
Digital Library
- Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens, J. D. 2011. Efficient maximal Poisson-disk sampling. ACM Trans. Graph. 30 (Aug.), 49:1--49:12. Google Scholar
Digital Library
- Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. (SIGGRAPH) 30, 3, 48:1--48:12. Google Scholar
Digital Library
- Floyd, R. W., and Steinberg, L. 1976. An adaptive algorithm for spatial grey scale. Proc. Soc. Inf. Display 17, 75--77.Google Scholar
- Gamito, M. N., and Maddock, S. C. 2009. Accurate multidimensional Poisson-disk sampling. ACM Trans. Graph. 29, 8:1--8:19. Google Scholar
Digital Library
- Jones, T. R. 2006. Efficient generation of Poisson-disk sampling patterns. Journal of Graphics, GPU, & Game Tools 11, 2, 27--36.Google Scholar
Cross Ref
- Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. 25, 3, 509--518. Google Scholar
Digital Library
- Lagae, A., and Dutré, P. 2006. An Alternative for Wang Tiles: Colored Edges versus Colored Corners. ACM Trans. Graph., 25, 4, 1442--1459. Google Scholar
Digital Library
- Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1, 114--129.Google Scholar
Cross Ref
- Lecot, G., and Lévy, B. 2006. ARDECO: Automatic Region DEtection and COnversion. In EG Symp. on Rendering, 349--360. Google Scholar
Digital Library
- Lemieux, C. 2009. Monte Carlo and Quasi Monte Carlo Sampling. Springer.Google Scholar
- Li, H., Nehab, D., Wei, L.-Y., Sander, P., and Fu, C.-W. 2010. Fast capacity constrained Voronoi tessellation. In Symp. on Interactive 3D Graphics & Games, 13:1--13:4. Google Scholar
Digital Library
- Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling. ACM Trans. Graph. (SIGGRAPH Asia) 29 (Dec.), 167:1--167:12. Google Scholar
Digital Library
- Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D., Lu, L., and Yang, C. 2009. On Centroidal Voronoi Tessellation - energy smoothness and fast computation. ACM Trans. Graph. 28, 4. Google Scholar
Digital Library
- Lloyd, S. 1982. Least squares quantization in PCM. Information Theory, IEEE Transactions on 28, 2 (Mar.), 129--137. Google Scholar
Digital Library
- Lucarini, V. 2009. Symmetry-break in Voronoi tessellations. Symmetry 1, 1, 21--54.Google Scholar
Cross Ref
- McCool, M., and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Proc. Graphics Interface '92, 94--105. Google Scholar
Digital Library
- Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In ACM SIGGRAPH, 65--72. Google Scholar
Digital Library
- Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge Optimized Triangulations. ACM Trans. Graph. (SIGGRAPH) 30, 3. Google Scholar
Digital Library
- Niederreiter, H. 1992. Random Number Generation and Quasi-Monte-Carlo Methods. SIAM. Google Scholar
Digital Library
- Nocedal, J., and Wright, S. J. 1999. Numerical optimization. Springer Verlag.Google Scholar
- Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3, 488--495. Google Scholar
Digital Library
- Ostromoukhov, V. 2007. Sampling with polyominoes. ACM Trans. Graph. 26, 3, 78:1--78:6. Google Scholar
Digital Library
- Schlömer, T., and Deussen, O. 2011. Accurate spectral analysis of two-dimensional point sets. Journal of Graphics, GPU, and Game Tools 15, 3, 152--160.Google Scholar
Cross Ref
- Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Symp. on High Performance Graphics, 135--142. Google Scholar
Digital Library
- Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J. 2010. Electrostatic halftoning. Comput. Graph. Forum 29, 8, 2313--2327.Google Scholar
Cross Ref
- Secord, A. 2002. Weighted Voronoi stippling. In Symp. on Non-Photorealistic Animation and Rendering, 37--43. Google Scholar
Digital Library
- Ulichney, R. 1987. Digital Halftoning. MIT Press. Google Scholar
Digital Library
- Villani, C. 2009. Optimal Transport: Old and New. Fundamental Principles of Mathematical Sciences, 338. Springer-Verlag.Google Scholar
Cross Ref
- Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30 (Aug.), 50:1--50:10. Google Scholar
Digital Library
- Wei, L.-Y. 2008. Parallel Poisson disk sampling. ACM Trans. Graph. (SIGGRAPH) 27 (August), 20:1--20:9. Google Scholar
Digital Library
- Wei, L.-Y. 2010. Multi-class blue noise sampling. ACM Trans. Graph. (SIGGRAPH) 29 (July), 79:1--79:8. Google Scholar
Digital Library
- Xiang, Y., Xin, S.-Q., Sun, Q., and He, Y. 2011. Parallel and accurate Poisson disk sampling on arbitrary surfaces. In SIGGRAPH Asia Sketches, 18:1--18:2. Google Scholar
Digital Library
- Xu, Y., Liu, L., Gotsman, C., and Gortler, S. J. 2011. Capacity-constrained Delaunay triangulation for point distributions. Comput. Graph. 35, 510--516. Google Scholar
Digital Library
- Xu, Y., Hu, R., Gotsman, C., and Liu, L. 2012. Blue noise sampling of surfaces. Comput. Graph. 36, 232--240. Google Scholar
Digital Library
- Yellott, J. I. J. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382--385.Google Scholar
Cross Ref
- Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Trans. Graph. (SIGGRAPH) 31, 4, 76:1--76:11. Google Scholar
Digital Library
Index Terms
Blue noise through optimal transport
Recommendations
Multi-class blue noise sampling
Sampling is a core process for a variety of graphics applications. Among existing sampling methods, blue noise sampling remains popular thanks to its spatial uniformity and absence of aliasing artifacts. However, research so far has been mainly focused ...
Blue noise sampling with controlled aliasing
In this article we revisit the problem of blue noise sampling with a strong focus on the spectral properties of the sampling patterns. Starting from the observation that oscillations in the power spectrum of a sampling pattern can cause aliasing ...
Capacity constrained blue-noise sampling on surfaces
We present a novel method for high-quality blue-noise sampling on mesh surfaces with prescribed cell-sizes for the underlying tessellation (capacity constraint). Unlike the previous surface sampling approach that only uses capacity constraints as a ...





Comments