skip to main content
research-article

Blue noise through optimal transport

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

We present a fast, scalable algorithm to generate high-quality blue noise point distributions of arbitrary density functions. At its core is a novel formulation of the recently-introduced concept of capacity-constrained Voronoi tessellation as an optimal transport problem. This insight leads to a continuous formulation able to enforce the capacity constraints exactly, unlike previous work. We exploit the variational nature of this formulation to design an efficient optimization technique of point distributions via constrained minimization in the space of power diagrams. Our mathematical, algorithmic, and practical contributions lead to high-quality blue noise point sets with improved spectral and spatial properties.

Skip Supplemental Material Section

Supplemental Material

References

  1. Aurenhammer, F., Hoffmann, F., and Aronov, B. 1998. Minkowski-type theorems and least-squares clustering. Algorithmica 20, 1, 61--76.Google ScholarGoogle ScholarCross RefCross Ref
  2. Balzer, M., and Heck, D. 2008. Capacity-constrained Voronoi diagrams in finite spaces. In Int. Symp. on Voronoi Diag., 44--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Balzer, M., Deussen, O., and Lewerentz, C. 2005. Voronoi treemaps for the visualization of software metrics. In Symp. on Software Visualization, ACM, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. ACM Trans. Graph. (SIGGRAPH) 28, 3, 86:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Balzer, M. 2009. Capacity-constrained Voronoi diagrams in continuous spaces. In Int. Symp. on Voronoi Diagrams, 79--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using Lagrangian mass transport. ACM Trans. Graph. (SIGGRAPH ASIA) 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel Poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29 (Dec.), 166:1--166:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bridson, R. 2007. Fast Poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH sketches. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. CGAL, 2010. Computational Geometry Algorithms Library (release 3.8). http://www.cgal.org.Google ScholarGoogle Scholar
  10. Chen, Z., Yuan, Z., Choi, Y.-K., Liu, L., and Wang, W. 2012. Variational blue noise sampling. IEEE Trans. Vis. Comput. Graphics 18, 10, 1784--1796. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. In ACM SIGGRAPH, 287--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Crow, F. C. 1977. The aliasing problem in computer-generated shaded images. Commun. ACM 20, 11, 799--805. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Davis, T. A. 2011. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization. ACM Trans. Math. Softw. 38 (Dec.), 8:1--8:22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. de Goes, F., Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2011. An optimal transport approach to robust reconstruction and simplification of 2d shapes. Computer Graphics Forum 30, 5, 1593--1602.Google ScholarGoogle ScholarCross RefCross Ref
  16. Deussen, O., Hiller, S., Overveld, C., and Strothotte, T. 2000. Floating points: A method for computing stipple drawings. Computer Graphics Forum (EG'00) 19, 3, 40--51.Google ScholarGoogle Scholar
  17. Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In ACM SIGGRAPH, 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi Tessellations: Applications and algorithms. SIAM Rev. 41 (Dec.), 637--676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. ACM Trans. Graph. 25, 3 (July), 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens, J. D. 2011. Efficient maximal Poisson-disk sampling. ACM Trans. Graph. 30 (Aug.), 49:1--49:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. (SIGGRAPH) 30, 3, 48:1--48:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Floyd, R. W., and Steinberg, L. 1976. An adaptive algorithm for spatial grey scale. Proc. Soc. Inf. Display 17, 75--77.Google ScholarGoogle Scholar
  23. Gamito, M. N., and Maddock, S. C. 2009. Accurate multidimensional Poisson-disk sampling. ACM Trans. Graph. 29, 8:1--8:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jones, T. R. 2006. Efficient generation of Poisson-disk sampling patterns. Journal of Graphics, GPU, & Game Tools 11, 2, 27--36.Google ScholarGoogle ScholarCross RefCross Ref
  25. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. 25, 3, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lagae, A., and Dutré, P. 2006. An Alternative for Wang Tiles: Colored Edges versus Colored Corners. ACM Trans. Graph., 25, 4, 1442--1459. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1, 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lecot, G., and Lévy, B. 2006. ARDECO: Automatic Region DEtection and COnversion. In EG Symp. on Rendering, 349--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lemieux, C. 2009. Monte Carlo and Quasi Monte Carlo Sampling. Springer.Google ScholarGoogle Scholar
  30. Li, H., Nehab, D., Wei, L.-Y., Sander, P., and Fu, C.-W. 2010. Fast capacity constrained Voronoi tessellation. In Symp. on Interactive 3D Graphics & Games, 13:1--13:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling. ACM Trans. Graph. (SIGGRAPH Asia) 29 (Dec.), 167:1--167:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D., Lu, L., and Yang, C. 2009. On Centroidal Voronoi Tessellation - energy smoothness and fast computation. ACM Trans. Graph. 28, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lloyd, S. 1982. Least squares quantization in PCM. Information Theory, IEEE Transactions on 28, 2 (Mar.), 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Lucarini, V. 2009. Symmetry-break in Voronoi tessellations. Symmetry 1, 1, 21--54.Google ScholarGoogle ScholarCross RefCross Ref
  35. McCool, M., and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Proc. Graphics Interface '92, 94--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In ACM SIGGRAPH, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge Optimized Triangulations. ACM Trans. Graph. (SIGGRAPH) 30, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Niederreiter, H. 1992. Random Number Generation and Quasi-Monte-Carlo Methods. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Nocedal, J., and Wright, S. J. 1999. Numerical optimization. Springer Verlag.Google ScholarGoogle Scholar
  40. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ostromoukhov, V. 2007. Sampling with polyominoes. ACM Trans. Graph. 26, 3, 78:1--78:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Schlömer, T., and Deussen, O. 2011. Accurate spectral analysis of two-dimensional point sets. Journal of Graphics, GPU, and Game Tools 15, 3, 152--160.Google ScholarGoogle ScholarCross RefCross Ref
  43. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Symp. on High Performance Graphics, 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J. 2010. Electrostatic halftoning. Comput. Graph. Forum 29, 8, 2313--2327.Google ScholarGoogle ScholarCross RefCross Ref
  45. Secord, A. 2002. Weighted Voronoi stippling. In Symp. on Non-Photorealistic Animation and Rendering, 37--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Ulichney, R. 1987. Digital Halftoning. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Villani, C. 2009. Optimal Transport: Old and New. Fundamental Principles of Mathematical Sciences, 338. Springer-Verlag.Google ScholarGoogle ScholarCross RefCross Ref
  48. Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30 (Aug.), 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wei, L.-Y. 2008. Parallel Poisson disk sampling. ACM Trans. Graph. (SIGGRAPH) 27 (August), 20:1--20:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wei, L.-Y. 2010. Multi-class blue noise sampling. ACM Trans. Graph. (SIGGRAPH) 29 (July), 79:1--79:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Xiang, Y., Xin, S.-Q., Sun, Q., and He, Y. 2011. Parallel and accurate Poisson disk sampling on arbitrary surfaces. In SIGGRAPH Asia Sketches, 18:1--18:2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Xu, Y., Liu, L., Gotsman, C., and Gortler, S. J. 2011. Capacity-constrained Delaunay triangulation for point distributions. Comput. Graph. 35, 510--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Xu, Y., Hu, R., Gotsman, C., and Liu, L. 2012. Blue noise sampling of surfaces. Comput. Graph. 36, 232--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yellott, J. I. J. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382--385.Google ScholarGoogle ScholarCross RefCross Ref
  55. Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Trans. Graph. (SIGGRAPH) 31, 4, 76:1--76:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Blue noise through optimal transport

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 6
      November 2012
      794 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2366145
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 November 2012
      Published in tog Volume 31, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader