
References
- Ad.L. Adleman, "On breaking the iterated Merkle- Hellman public key cryptosystem", in: Advances in Cryptology, Proceedings of CRYPTO 82, Plenum Press, New York, 1983, 303-308.Google Scholar
- Ajt.M. Ajtai, "Generating Hard instances of Lattice Problems" Electronic Colloquium on Computational Complexity, 1996. TR96-007, http://www.eccc.unitrier.de/eccc/Google Scholar
- Br.E.F. Brickell, "Breaking iterated knapsacks", in: Advances in Cryptology, Proceedings of CRYPTO 84, Springer, Berlin, 1985 Google Scholar
Digital Library
- Ca.J.W.S. Cassels, "An Introduction to the Geometry of Numbers", Springer, 1959.Google Scholar
Cross Ref
- GL.P.M. Gruber, C.G.Lekkerkerker, "Geometry of Numbers", North-Holland, 1987Google Scholar
- GLS.M. GrStschel, L. LovAsz, A. Schrijver, "Geometric Algorithms and Combinatorial Optimization", Springer, Algorithms and Combinatorics, 1988Google Scholar
- IN.R. Implagliazzo, M. Naor, "Efficient Cryptographic Schemes Provably as Secure as Subset Sum", STOC, 1989, pp. 236-241Google Scholar
- LaOd.J.C. Lagarias, A.M. Odlyzko (1983), "Solving low-density subset sum problems", Journal of the Association for Computing Machinery 32 (1985) 229-246. Google Scholar
Digital Library
- LLL.A.K. Lenstra, H.W. Lenstra, L. Lov~sz "Factoring polynomials with rational coefficients", Math. Ann. 261, 515-534 (1982)Google Scholar
Cross Ref
Index Terms
Generating hard instances of lattice problems (extended abstract)





Comments