skip to main content
10.1145/2413176.2413189acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
research-article

Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE

Authors Info & Claims
Published:10 December 2012Publication History

ABSTRACT

Many commercial video players rely on bitrate adaptation logic to adapt the bitrate in response to changing network conditions. Past measurement studies have identified issues with today's commercial players with respect to three key metrics---efficiency, fairness, and stability---when multiple bitrate-adaptive players share a bottleneck link. Unfortunately, our current understanding of why these effects occur and how they can be mitigated is quite limited.

In this paper, we present a principled understanding of bitrate adaptation and analyze several commercial players through the lens of an abstract player model. Through this framework, we identify the root causes of several undesirable interactions that arise as a consequence of overlaying the video bitrate adaptation over HTTP. Building on these insights, we develop a suite of techniques that can systematically guide the tradeoffs between stability, fairness and efficiency and thus lead to a general framework for robust video adaptation. We pick one concrete instance from this design space and show that it significantly outperforms today's commercial players on all three key metrics across a range of experimental scenarios.

References

  1. Adobe http dynamic streaming. www.adobe.com/products/hds-dynamic-streaming.html.Google ScholarGoogle Scholar
  2. Adobe osmf player. http://www.osmf.org.Google ScholarGoogle Scholar
  3. Akamai hd adaptive streaming. http://wwwns.akamai.com/hdnetwork/demo/index.html.Google ScholarGoogle Scholar
  4. Apple quicktime. www.apple.com/quicktime/download/.Google ScholarGoogle Scholar
  5. Cisco forecast. http://goo.gl/hHzW4.Google ScholarGoogle Scholar
  6. Crystal-clear hd with adobe http dynamic streaming. http://zeridemo-f.akamaihd.net/content/adobe/demo/1080p.f4m.Google ScholarGoogle Scholar
  7. Harmonic mean. http://en.wikipedia.org/wiki/Harmonic_mean.Google ScholarGoogle Scholar
  8. Mail service costs Netflix 20 times more than streaming. http://goo.gl/msuYK.Google ScholarGoogle Scholar
  9. Osmf 2.0 release code. http://sourceforge.net/projects/osmf.adobe/files/latest/download.Google ScholarGoogle Scholar
  10. Real-time messaging protocol. www.adobe.com/devnet/rtmp.html.Google ScholarGoogle Scholar
  11. Smoothstreaming experience. http://www.iis.net/media/experiencesmoothstreaming.Google ScholarGoogle Scholar
  12. Smoothstreaming protocol. http://go.microsoft.com/?linkid=9682896.Google ScholarGoogle Scholar
  13. I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the Internet. IEEE Multimedia, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. What Happens when HTTP Adaptive Streaming Players Compete for Bandwidth? In Proc. NOSSDAV, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Akhshabi, A. Begen, and C. Dovrolis. An Experimental Evaluation of Rate Adaptation Algorithms in Adaptive Streaming over HTTP. In Proc. MMSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Balachandran, V. Sekar, A. Akella, S. Stoica, and H. Zhang. A quest for an internet video quality-of-experience metric. 2012.Google ScholarGoogle Scholar
  17. J. Byers, M. Luby, and M. Mitzenmacher. A digital fountain approach to asynchronous reliable multicast. IEEE JSAC, Oct. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. N. Cranley, P. Perry, and L. Murphy. User perception of adapting video quality. International Journal of Human-Computer Studies, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. De Cicco and S. Mascolo. An experimental investigation of the akamai adaptive video streaming. HCI in Work and Learning, Life and Leisure. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm. In Proc. SIGCOMM, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph, A. Ganjam, J. Zhan, and H. Zhang. Understanding the impact of video quality on user engagement. In Proc. SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Esteban, S. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac. Interactions Between HTTP Adaptive Streaming and TCP. In Proc. NOSSDAV, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Finamore, M. Mellia, M. Munafo, R. Torres, and S. G. Rao. Youtube everywhere: Impact of device and infrastructure synergies on user experience. In Proc. IMC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate Limiting YouTube Video Streaming. In Proc. USENIX ATC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Gouache, G. Bichot, A. Bsila, and C. Howson. Distributed and Adaptive HTTP Streaming. In Proc. ICME, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Havey, R. Chertov, and K. Almeroth. Receiver driven rate adaptation for wireless multimedia applications. In Proc. MMSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Houdaille and S. Gouache. Shaping http adaptive streams for a better user experience. In Proc. MMSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard. In Proc. IMC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM Computer Communication Review, volume 18, pages 314--329. ACM, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard. Networking Named Content. In Proc. CoNext, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. Kuschnig, I. Kofler, and H. Hellwagner. Evaluation of http-based request-response streams for internet video streaming. Multimedia Systems, pages 245--256, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. De Cicco, S. Mascolo, and V. Palmisano. Feedback Control for Adaptive Live Video Streaming. In Proc. of ACM Multimedia Systems Conference, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C. Liu, I. Bouazizi, and M. Gabbouj. Parallel Adaptive HTTP Media Streaming. In Proc. ICCCN, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  34. C. Liu, I. Bouazizi, and M. Gabbouj. Rate adaptation for adaptive http streaming. Proc. ACM MMSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. H. Liu, Y. Wang, Y. R. Yang, A. Tian, and H. Wang. Optimizing Cost and Performance for Content Multihoming. In Proc. SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A Case for a Coordinated Internet Video Control Plane. In SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. S. McCanne, M. Vetterli, and V. Jacobson. Low-complexity video coding for receiver-driven layered multicast. IEEE JSAC, Aug. 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. K. Miller, E. Quacchio, G. Gennari, and A. Wolisz. Adaptation Algorithm for Adaptive Streaming over HTTP. In Proc. Packet Video Workshop, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  39. R. K. P. Mok, E. W. W. Chan, X. Luo, and R. K. C. Chang. Inferring the QoE of HTTP Video Streaming from User-Viewing Activities. In SIGCOMM W-MUST, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang. QDASH: A QoE-aware DASH system. In Proc. MMSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. R. Pantos. Http live streaming. 2011.Google ScholarGoogle Scholar
  42. L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow waist of the future internet. In Proc. HotNets, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Technical Report, DEC, 1984.Google ScholarGoogle Scholar
  44. A. Rao, Y.-S. Lim, C. Barakat, A. Legout, D. Towsley, and W. Dabbous. Network Characteristics of Video Streaming Traffic. In Proc. CoNext, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. R. Rejaie and J. Kangasharju. Mocha: A quality adaptive multimedia proxy cache for internet streaming. In Proc. NOSSDAV , 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. L. Rizzo. Dummynet: a simple approach to the evaluation of network protocols. ACM SIGCOMM Computer Communication Review, 27(1):31--41, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. H. H. Song, Z. Ge, A. Mahimkar, J. Wang, J. Yates, Y. Zhang, A. Basso, and M. Chen. Q-score: Proactive Service Quality Assessment in a Large IPTV System. In Proc. IMC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          CoNEXT '12: Proceedings of the 8th international conference on Emerging networking experiments and technologies
          December 2012
          384 pages
          ISBN:9781450317757
          DOI:10.1145/2413176

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 10 December 2012

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate198of789submissions,25%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader