column

SIGACT News Complexity Theory Column 76: an atypical survey of typical-case heuristic algorithms

Online:19 December 2012Publication History

Abstract

Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpré, Ogiwara, Schöning, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.

References

  1. M. Alekhnovich and E. Ben-Sasson. Linear upper bounds for random walk on small density random 3-CNFs. SIAM Journal on Computing, 36(5):1248--1263, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Arora, D. Steurer, and A. Wigderson. Towards a study of low-complexity graphs.In Proceedings (Part I) of the 36th International Colloquium on Automata, Languages, and Programming, pages 119--131. Springer-Verlag Lecture Notes in Computer Science #5555, July 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. Barak. Truth vs. proof in computational complexity. Bulletin of the EATCS, 108, October 2012. To appear.Google ScholarGoogle Scholar
  4. L. Berman and J. Hartmanis. On isomorphisms and density of NP and other complete sets. SIAM Journal on Computing, 6(2):305--322, 1977.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Buhrman and S. Homer. Superpolynomial circuits, almost sparse oracles, and the exponential hierarchy. In Proceedings of the 12th Conference on Foundations of Software Technology and Theoretical Computer Science, pages 116--127. Springer-Verlag Lecture Notes in Computer Science #652, December 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. Buhrman and J. Hitchcock. NP-hard sets are exponentially dense unless coNP⊆ NP/poly. In Proceedings of the 23rd Annual IEEE Conference on Computational Complexity, pages 1--7. IEEE Computer Society Press, June 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Beame, R. Karp, T. Pitassi, and M. Saks. The efficiency of resolution and Davis-Putnam procedures. SIAM Journal on Computing, 31(4):1048--1075, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Bogdanov and M. Safra. Hardness amplification for errorless heuristics. In Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, pages 418--426. IEEE Computer Society Press, October 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Bogdanov and L. Trevisan. Average-Case Complexity. Now Publishers, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. E. Ben-Sasson and A. Wigderson. Short proofs are narrow---Resolution made simple. Journal of the ACM, 48(2):149--169, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Cai. Sp2 ⊆ ZPPNP. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pages 620--629. IEEE Computer Society Press, October 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara. Competing provers yield improved Karp--Lipton collapse results. Information and Computation, 198(1):1--23, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: Automatically generating inputs of death. ACM Transactions on Information and System Security, 12(2), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. B. Dilkina, C. Gomes, Y. Malitsky, A. Sabharwal, and M. Sellmann. Backdoors to combinatorial optimization: Feasibility and optimality. In Proceedings of the 6th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pages 56--70. Springer-Verlag Lecture Notes in Computer Science #5547, May 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. Dilkina, C. Gomes, and A. Sabharwal. Tradeoffs in the complexity of backdoor detection. In Proceedings of the 13th International Conference on Principles and Practice of Constraint Programming, pages 256--270. Springer-Verlag Lecture Notes in Computer Science #4741, September 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. B. Dilkina, C. Gomes, and A. Sabharwal. Backdoors in the context of learning. In Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing, pages 73--79. Springer-Verlag Lecture Notes in Computer Science #5584, June/July 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Erdélyi, L. Hemaspaandra, J. Rothe, and H. Spakowski. Generalized juntas and NP-hard sets. Theoretical Computer Science, 410(38--40):3995--4000, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. U. Feige. Relations between average case complexity and approximation complexity. In Proceedings of the 34th ACM Symposium on Theory of Computing, pages 534--543. ACM Press, May 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. The complexity of manipulative attacks in nearly single-peaked electorates. In Proceedings of the 13th Conference on Theoretical Aspects of Rationality and Knowledge, pages 228--237. ACM Digital Library, July 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.Mathematical Systems Theory, 17(1):13--27, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  21. C. Glaser and L. Hemaspaandra. A moment of perfect clarity II: Consequences of sparse sets hard for NP with respect to weak reductions. SIGACT News, 31(4):39--51, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Computing, 6(4):675--695, 1977.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers. In F. van Harmelen, V. Lifschitz, and B. Porter, editors, Handbook of Knowledge Representation. Elsevier, 2008.Google ScholarGoogle Scholar
  25. S. Gaspers and S. Szeider. Backdoors to satisfaction. In The Multivariate Algorithmic Revolution and Beyond, pages 287--317. Springer-Verlag Lecture Notes in Computer Science #7370, 2012. Google ScholarGoogle ScholarCross RefCross Ref
  26. C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomization. In Proceedings of the 15th National Conference on Artificial Intelligence, pages 431--437, July 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. O. Goldreich and A. Wigderson. Derandomization that is rarely wrong from short advice that is typically good. In Proceedings of the 6th International Workshop on Randomization and Approximation Techniques, pages 209--223, September 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Haken. The intractability of resolution. Theoretical Computer Science, 39(2--3):297--308, 1985.Google ScholarGoogle Scholar
  29. E. Hemaspaandra, L. Hemaspaandra, and C. Menton. Search versus decision for election manipulation problems. Technical Report arXiv:1202.6641 {cs.GT}, Computing Research Repository, arXiv.org/corr/, February 2012. Revised, March 2012.Google ScholarGoogle Scholar
  30. J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP?P: EXPTIME versus NEXPTIME. Information and Control, 65(2--3):159--181, 1985.Google ScholarGoogle Scholar
  31. S. Homer and L. Longpré. On reductions of NP sets to sparse sets. Journal of Computer and System Sciences, 48(2):324--336, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Hartmanis and S. Mahaney. An essay about research on sparse NP complete sets. In Proceedings of the 9th Symposium on Mathematical Foundations of Computer Science, pages 40--57. Springer-Verlag Lecture Notes in Computer Science #88, September 1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. L. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are sparse sets? In Proceedings of the 7th Structure in Complexity Theory Conference, pages 222--238. IEEE Computer Society Press, June 1992.Google ScholarGoogle ScholarCross RefCross Ref
  34. R. Impagliazzo. A personal view of average-case complexity. In Proceedings of the 10th Structure in Complexity Theory Conference, pages 134--147. IEEE Computer Society Press, June 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. R. Impagliazzo. Relativized separations of worst-case and average-case complexities for NP. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity, pages 104--114. IEEE Computer Society Press, June 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. Interian. Backdoor sets for random 3-SAT. In Sixth International Conference on Theory and Applications of Satisfiability Testing (informal proceedings), pages 231--238, 2003.Google ScholarGoogle Scholar
  37. R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav, A. Slobodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik. Replacing testing with formal verification in Intel Core i7 processor execution engine validation. In Proceedings of the 21st International Conference on Computer Aided Verification, pages 414--429. Springer-Verlag Lecture Notes in Computer Science #5643, June/July 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity, 13(1--2):1--46, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proceedings of the 12th ACM Symposium on Theory of Computing, pages 302--309. ACM Press, April 1980. An extended version has also appeared as: Turing machines that take advice, L'Enseignement Mathématique, 2nd series, 28:191--209, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. Kinne, D. van Melkebeek, and R. Shaltiel. Pseudorandom generators, typicallycorrect derandomization, and circuit lower bounds. Computational Complexity, 21(1):3--61, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. L. Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285--286, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities. Theoretical Computer Science, 1(2):103--124, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  43. S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis. Journal of Computer and System Sciences, 25(2):130--143, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  44. S. Mahaney. Sparse sets and reducibilities. In R. Book, editor, Studies in Complexity Theory, pages 63--118. John Wiley and Sons, 1986.Google ScholarGoogle Scholar
  45. D. van Melkebeek and R. Santhanam. Holographic proofs and derandomization. SIAM Journal on Computing, 35(1):59--90, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471--483, June 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. C. Papadimitriou. Computational Complexity. Addison Wesley, 1994.Google ScholarGoogle Scholar
  48. A. Procaccia and J. Rosenschein. Junta distributions and the average-case complexity of manipulating elections. Journal of Artificial Intelligence Research, 28:157--181, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. R. Raz. Resolution lower bounds for the weak pigeonhole principle. Journal of the ACM, 51(2):115--138, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. U. Schöning. Complete sets and closeness to complexity classes. Mathematical Systems Theory, 19(1):29--42, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  52. N. Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic, 13(4):417--481, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  53. R. Shaltiel. Typically-correct derandomization. SIGACT News, 41(2):57--72, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. M. Samer and S. Szeider. Backdoor trees. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pages 363--368. AAAI Press, July 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. L. Trevisan. Lecture notes on computational complexity. www.cs.berkeley.edu/¿luca/notes/complexitynotes02.pdf (Lecture 12), 2002.Google ScholarGoogle Scholar
  56. R. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 2001.Google ScholarGoogle Scholar
  57. R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In Proceedings of the 18th International Joint Conference on Artificial Intelligence, pages 1173--1178. Morgan Kaufmann, August 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research, 32:565--606, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Y. Yesha. On certain polynomial-time truth-table reducibilities of complete sets to sparse sets. SIAM Journal on Computing, 12(3):411--425, 1983.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. P. Young. How reductions to sparse sets collapse the polynomial-time hierarchy: A primer. SIGACT News, 23, 1992. Part I (#3, pages 107--117), Part II (#4, pages 83--94), and Corrigendum to Part I (#4, page 94). Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. M. Zimand. Exposure-resilient extractors and the derandomization of probabilistic sublinear time. Computational Complexity, 17(2):220--253, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. SIGACT News Complexity Theory Column 76: an atypical survey of typical-case heuristic algorithms

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      ACM SIGACT News cover image
      ACM SIGACT News  Volume 43, Issue 4
      December 2012
      120 pages
      ISSN:0163-5700
      DOI:10.1145/2421119
      Issue’s Table of Contents

      Copyright © 2012 Authors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Online: 19 December 2012

      Qualifiers

      • column

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader
    About Cookies On This Site

    We use cookies to ensure that we give you the best experience on our website.

    Learn more

    Got it!