skip to main content
research-article

Example-guided physically based modal sound synthesis

Published:07 February 2013Publication History
Skip Abstract Section

Abstract

Linear modal synthesis methods have often been used to generate sounds for rigid bodies. One of the key challenges in widely adopting such techniques is the lack of automatic determination of satisfactory material parameters that recreate realistic audio quality of sounding materials. We introduce a novel method using prerecorded audio clips to estimate material parameters that capture the inherent quality of recorded sounding materials. Our method extracts perceptually salient features from audio examples. Based on psychoacoustic principles, we design a parameter estimation algorithm using an optimization framework and these salient features to guide the search of the best material parameters for modal synthesis. We also present a method that compensates for the differences between the real-world recording and sound synthesized using solely linear modal synthesis models to create the final synthesized audio. The resulting audio generated from this sound synthesis pipeline well preserves the same sense of material as a recorded audio example. Moreover, both the estimated material parameters and the residual compensation naturally transfer to virtual objects of different sizes and shapes, while the synthesized sounds vary accordingly. A perceptual study shows the results of this system compare well with real-world recordings in terms of material perception.

Skip Supplemental Material Section

Supplemental Material

tp165.mp4

References

  1. Adrien, J.-M. 1991. The missing link: Modal synthesis. In Representations of Musical Signals, MIT Press, Cambridge, MA, 269--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Audiokinetic. 2011. Wwise SoundSeed Impact. http://www.audiokinetic. com/en/products/wwise-add-ons/soundseed/introductionGoogle ScholarGoogle Scholar
  3. Besl, P. J. and McKay, N. D. 1992. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast modal sounds with scalable frequency-domain synthesis. ACM Trans. Graph. 27, 3, 24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic shells: A practical nonlinear sound model for near-rigid thin shells. In Proceedings of the SIGGRAPH Asia '09: ACM SIGGRAPH Asia Papers. ACM, New York, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chadwick, J. N. and James, D. L. 2011. Animating fire with sound. ACM Trans. Graph. 30, 84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cook, P. R. 1996. Physically informed sonic modeling (PhISM): percussive synthesis. In Proceedings of the International Computer Music Conference. The International Computer Music Association, 228--231.Google ScholarGoogle Scholar
  8. Cook, P. R. 1997. Physically informed sonic modeling (phism): Synthesis of percussive sounds. Comput. Music J. 21, 3, 38--49.Google ScholarGoogle ScholarCross RefCross Ref
  9. Cook, P. R. 2002. Real Sound Synthesis for Interactive Applications. A. K. Peters, Ltd., Natick, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Corbett, R., van den Doel, K., Lloyd, J. E., and Heidrich, W. 2007. Timbrefields: 3d interactive sound models for real-time audio. Presence: Teleoper. Virtual Environ. 16, 6, 643--654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dobashi, Y., Yamamoto, T., and Nishita, T. 2003. Real-Time rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Trans. Graph. 22, 3, 732--740. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dobashi, Y., Yamamoto, T., and Nishita, T. 2004. Synthesizing sound from turbulent field using sound textures for interactive fluid simulation. Comput. Graph. Forum 23, 539--545.Google ScholarGoogle ScholarCross RefCross Ref
  13. Dubuisson, M. P. and Jain, A. K. 1994. A modified hausdorff distance for object matching. In Proceedings of the 12th International Conference on Pattern Recognition. Vol. 1, IEEE Computer Society Press, 566--568.Google ScholarGoogle Scholar
  14. Fontana, F. 2003. The sounding object. In Mondo Estremo.Google ScholarGoogle Scholar
  15. Gope, C. and Kehtarnavaz, N. 2007. Affine invariant comparison of point-sets using convex hulls and hausdorff distances. Pattern Recogn. 40, 1, 309--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Griffin, D. and Lim, J. 2003. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32, 2, 236--243.Google ScholarGoogle ScholarCross RefCross Ref
  17. ISO. 2003. ISO 226: 2003: AcousticsNormal equalloudness-level contours. International Organization for Standardization.Google ScholarGoogle Scholar
  18. James, D., Barbič, J., and Pai, D. 2006. Precomputed acoustic transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. In Proceedings of the ACM SIGGRAPH '06 Papers. ACM, 995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. 1999. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9, 1, 112--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lakatos, S., Mcadams, S., and Caussé, R. 1997. The representation of auditory source characteristics: Simple geometric form. Atten., Percept. Psychophys. 59, 8, 1180--1190.Google ScholarGoogle ScholarCross RefCross Ref
  21. Levine, S. N., Verma, T. S., and Smith, J. O. 1998. Multiresolution sinusoidal modeling for wideband audio with modifications. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Vol. 6, IEEE, 3585--3588.Google ScholarGoogle Scholar
  22. Lloyd, D. B., Raghuvanshi, N., and Govindaraju, N. K. 2011. Sound synthesis for impact sounds in video games. In Proceedings of the Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Morchen, F., Ultsch, A., Thies, M., and Lohken, I. 2006. Modeling timbre distance with temporal statistics from polyphonic music. IEEE Trans. Audio, Speech Lang. Process. 14, 1, 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Moss, W., Yeh, H., Hong, J., Lin, M., and Manocha, D. 2010. Sounding liquids: Automatic sound synthesis from fluid simulation. ACM Trans. Graph. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. O'Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. ACM Press, 529--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In Proceedings of the ACM SIGGRAPH Symposium on Computer Animation. ACM Press, 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Oppenheim, A. V., Schafer, R. W., and Buck, J. R. 1989. Discrete-Time Signal Processing. Vol. 1999, Prentice Hall, Englewood Cliffs, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pai, D. K., Doel, K. V. D., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). ACM, New York, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pampalk, E., Rauber, A., and Merkl, D. 2002. Content-Based organization and visualization of music archives. In Proceedings of the 10th ACM International Conference on Multimedia. ACM, 570--579. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Picard, C., Tsingos, N., and Faure, F. 2009. Retargetting example sounds to interactive physics-driven animations. In Proceedings of the AES 35th International Conference-Audio for Games.Google ScholarGoogle Scholar
  31. Quatieri, T. and McAulay, R. 1985. Speech transformations based on a sinusoidal representation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '85). Vol. 10, 489--492.Google ScholarGoogle ScholarCross RefCross Ref
  32. Raghuvanshi, N. and Lin, M. 2006. Symphony: Real-Time physically-based sound synthesis. In Proceedings of the Symposium on Interactive 3D Graphics and Games.Google ScholarGoogle Scholar
  33. Ren, Z., Mehra, R., Coposky, J., and Lin, M. C. 2012. Tabletop ensemble: touch-enabled virtual percussion instruments. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D '12). ACM, New York, 7--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ren, Z., Yeh, H., and Lin, M. 2010. Synthesizing contact sounds between textured models. In Proceedings of the IEEE Virtual Reality Conference (VR'10). 139--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ren, Z., Yeh, H., Klatzky, R., and Lin, M. C. 2013. Geometry-Invariant material perception: Analysis and evaluation of Rayleigh damping model. IEEE Trans. Visualiz. Comput. Graph. 19, 4 (Special Issue VR'13).Google ScholarGoogle ScholarCross RefCross Ref
  36. Roads, C. 2004. Microsound. The MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Serra, X. 1997. Musical sound modeling with sinusoids plus noise. In Musical Signal Processing, 497--510.Google ScholarGoogle Scholar
  38. Serra, X. and Smith III, J. 1990. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Comput. Music J. 14, 4, 12--24.Google ScholarGoogle ScholarCross RefCross Ref
  39. Shabana, A. 1997. Vibration of Discrete and Continuous Systems. Springer Verlag.Google ScholarGoogle Scholar
  40. Trebien, F. and Oliveira, M. 2009. Realistic real-time sound resynthesis and processing forinteractive virtual worlds. Vis. Comput. 25, 469-- 477. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Välimäki, V., Huopaniemi, J., Karjalainen, M., and Jánosy, Z. 1996. Physical modeling of plucked string instruments with application to real-time sound synthesis. J. Audio Engin. Soc. 44, 5, 331--353.Google ScholarGoogle Scholar
  42. Välimäki, V. and Tolonen, T. 1997. Development and calibration of a guitar synthesizer. Audio Visual Society.Google ScholarGoogle Scholar
  43. van den Doel, K., Knott, D., and Pai, D. K. 2004. Interactive simulation of complex audiovisual scenes. Presence: Teleoper. Virtual Environ. 13, 99--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. van den Doel, K., Kry, P., and Pai, D. 2001. FoleyAutomatic: Physically-Based sound effects for interactive simulation and animation. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. van den Doel, K. and Pai, D. K. 1998. The sounds of physical shapes. Presence: Teleoper. Virtual Environ. 7, 382--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Van Den Doel, K. and Pai, D. K. 2002. Measurements of perceptual quality of contact sound models. In Proceedings of the International Conference on Auditory Display (ICAD '02). 345--349.Google ScholarGoogle Scholar
  47. Zheng, C. and James, D. L. 2009. Harmonic fluids. In Proceedings of SIGGRAPH '09: ACM SIGGRAPH Papers. ACM, New York, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zheng, C. and James, D. L. 2010. Rigid-Body fracture sound with precomputed soundbanks. ACM Trans. Graph. 29, 69:1--69:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Zheng, C. and James, D. L. 2011. Toward high-quality modal contact sound. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Zwicker, E. and Fastl, H. 1999. Psychoacoustics: Facts and Models 2nd Ed. Springer, New York.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Example-guided physically based modal sound synthesis

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 32, Issue 1
                January 2013
                125 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/2421636
                Issue’s Table of Contents

                Copyright © 2013 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 7 February 2013
                • Revised: 1 March 2012
                • Accepted: 1 March 2012
                • Received: 1 July 2011
                Published in tog Volume 32, Issue 1

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article
                • Research
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader