skip to main content
research-article

Reconstructing surfaces of particle-based fluids using anisotropic kernels

Published:07 February 2013Publication History
Skip Abstract Section

Abstract

In this article we present a novel surface reconstruction method for particle-based fluid simulators such as Smoothed Particle Hydrodynamics. In particle-based simulations, fluid surfaces are usually defined as a level set of an implicit function. We formulate the implicit function as a sum of anisotropic smoothing kernels, and the direction of anisotropy at a particle is determined by performing Principal Component Analysis (PCA) over the neighboring particles. In addition, we perform a smoothing step that repositions the centers of these smoothing kernels. Since these anisotropic smoothing kernels capture the local particle distributions more accurately, our method has advantages over existing methods in representing smooth surfaces, thin streams, and sharp features of fluids. Our method is fast, easy to implement, and our results demonstrate a significant improvement in the quality of reconstructed surfaces as compared to existing methods.

References

  1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3, 48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adams, B. and Wicke, M. 2009. Meshless approximation methods and applications in physics based modeling and animation. In Eurographics Tutorials. 213--239.Google ScholarGoogle Scholar
  3. Bargteil, A., Goktekin, T., O'brien, J., and Strain, J. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1, 38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Becker, M., Ihmsen, M., and Teschner, M. 2009a. Corrotated sph for deformable solids. In Proceedings of the Eurographics Workshop on Natural Phenomena. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Becker, M. and Teschner, M. 2007. Weakly compressible sph for free surface flows. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 209--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Becker, M., Tessendorf, H., and Teschner, M. 2009b. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Trans. Visual. Comput. Graph. 15, 3, 493--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bhattacharya, H., Gao, Y., and Bargteil, A. W. 2011. A level-set method for skinning animated particle data. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Blinn, J. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3, 235--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brochu, T. and Bridson, R. 2006. Fluid animation with explicit surface meshes. In Proceedings of the Symposium on Computer Animation, Poster Session.Google ScholarGoogle Scholar
  10. Brochu, T. and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Carchid, M. 1986. A method for finding the eigenvectors of an n n matrix corresponding to eigenvalues of multiplicity one. Ameri. Math. Mont. 93, 8, 647--649. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Desbrun, M. and Cani-Gascuel, M. 1998. Active implicit surface for animation. In Proceedings of the Graphics Interface. 143--150.Google ScholarGoogle Scholar
  13. Dinh, H., Turk, G., and Slabaugh, G. 2001. Reconstructing surfaces using anisotropic basis functions. In Proceedings of the International Conference on Computer Vision (ICCV). Vol. 2. 606--613.Google ScholarGoogle Scholar
  14. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Enright, D., Losasso, F., and Fedkiw, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Comput. Struc. 83, 6-7, 479--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Enright, D., Marschner, S., and Fedkiw, R. 2002b. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hirt, C. and Nichols, B. 1981. Volume of fluid/VOF/method for the dynamics of free boundaries. J. Comput. Phys. 39, 1, 201--225.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kalaiah, A. and Varshney, A. 2003. Statistical point geometry. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. Eurographics Association, 115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutre, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In Proceedings of the Eurographics/IEEE VGTC Symposium Point-Based Graphics 0, 125--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kopp, J. 2008. Efficient numerical digonalization of hermitian 3 × 3 matrices. Inte. J. Modern Phys. C 19, 03, 523--548.Google ScholarGoogle ScholarCross RefCross Ref
  21. Koren, Y. and Carmel, L. 2003. Visualization of labeled data using linear transformations. In Proceedings of IEEE Information Visualization. Vol. 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lenaerts, T., Adams, B., and Dutré, P. 2008. Porous flow in particle-based fluid simulations. In Proceedings of the ACM SIGGRAPH Papers. ACM, New York, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Liu, M. B., Liu, G. R., and Lam, K. Y. 2006. Adaptive Smoothed Particle Hydrodynamics for high strain hydrodynamics with material strength. Shock Waves 15, 21--29.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lorensen, W. E. and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface construction algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 163--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Monaghan, J. 1994. Simulating free surface flows with sph. J. Comput. Phys. 110, 2, 399--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Müller, M. 2009. Fast and robust tracking of fluid surfaces. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 237--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Müller, M. and Chentanez, N. 2011. Solid simulation with oriented particles. In ACM SIGGRAPH Papers (SIGGRAPH '11). ACM, New York, 92:1--92:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004a. Point based animation of elastic, plastic and melting objects. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., and Gross, M. 2004b. Interaction of fluids with deformable solids. J. Comput. Anim. Virt. Worlds. 159--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-Based fluid-fluid interaction. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, New York, 237--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Museth, K., Clive, M., and Zafar, N. B. 2007. Blobtacular: Surfacing particle system in “Pirates of the Caribbean 3”. In SIGGRAPH Sketches. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Osher, S. and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer.Google ScholarGoogle Scholar
  34. Owen, J. M., Villumsen, J. V., Shapiro, P. R., and Martel, H. 1995. Adaptive Smoothed Particle Hydrodynamics: Methodology II Astrophys. J. 116, 155.Google ScholarGoogle ScholarCross RefCross Ref
  35. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. T. 2003. Particle-based simulation of fluids. In Proceedings of Eurographics Conference. 401--410.Google ScholarGoogle Scholar
  36. Sin, F., Bargteil, A., and Hodgins, J. 2009. A point-based method for animating incompressible flow. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Smith, O. 1961. Eigenvalues of a symmetric 3 × 3 matrix. Comm. ACM 4, 4, 168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Solenthaler, B. and Pajarola, R. 2008. Density contrast sph interfaces. In Proceedings of ACM SIGGRAPH/EG Symposium on Computer Animation. 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid--solid interactions: Research articles. Comput. Animat. Virtual Worlds 18, 1, 69--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Strain, J. 2001. A fast semi-Lagrangian contouring method for moving interfaces. J. Comput. Phys. 170, 1, 373--394.Google ScholarGoogle ScholarCross RefCross Ref
  41. Taubin, G. 2000. Geometric signal processing on polygonal meshes. In Eurographics State of the Art Reports.Google ScholarGoogle Scholar
  42. Thürey, N., Keiser, R., Pauly, M., and Rüde, U. 2006. Detail-preserving fluid control. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association. 7--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Williams, B. W. 2008. Fluid surface reconstruction from particles. M.S. thesis, The University of British Columbia, Canada.Google ScholarGoogle Scholar
  44. Wojtan, C. 2011. Liquid simulation with mesh-based surface tracking. In ACM SIGGRAPH Courses (SIGGRAPH '11). ACM, New York, 8:1--8:84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. In Proceedings of the ACM SIGGRAPH Papers. ACM, 76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wojtan, C., Muller-Fischer, M., and Brochu, T. 2011. Liquid simulation with mesh-based surface tracking. In ACM SIGGRAPH '11 Courses. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yu, J. and Turk, G. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 217--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zhu, Y. and Bridson, R. 2005. Animating sand as a fluid. In Proceedings of the ACM SIGGRAPH Papers. ACM, 972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Reconstructing surfaces of particle-based fluids using anisotropic kernels

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 1
          January 2013
          125 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2421636
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 February 2013
          • Accepted: 1 May 2012
          • Revised: 1 April 2012
          • Received: 1 August 2011
          Published in tog Volume 32, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader