skip to main content
research-article

O-snap: Optimization-based snapping for modeling architecture

Published:07 February 2013Publication History
Skip Abstract Section

Abstract

In this article, we introduce a novel reconstruction and modeling pipeline to create polygonal models from unstructured point clouds. We propose an automatic polygonal reconstruction that can then be interactively refined by the user. An initial model is automatically created by extracting a set of RANSAC-based locally fitted planar primitives along with their boundary polygons, and then searching for local adjacency relations among parts of the polygons. The extracted set of adjacency relations is enforced to snap polygon elements together, while simultaneously fitting to the input point cloud and ensuring the planarity of the polygons. This optimization-based snapping algorithm may also be interleaved with user interaction. This allows the user to sketch modifications with coarse and loose 2D strokes, as the exact alignment of the polygons is automatically performed by the snapping. The generated models are coarse, offer simple editing possibilities by design, and are suitable for interactive 3D applications like games, virtual environments, etc. The main innovation in our approach lies in the tight coupling between interactive input and automatic optimization, as well as in an algorithm that robustly discovers the set of adjacency relations.

Skip Supplemental Material Section

Supplemental Material

tp122.mp4

References

  1. Alliez, P., Cohen-Steiner, D., Tong, Y., and Desbrun, M. 2007. Voronoi-Based variational reconstruction of unoriented point sets. In Proceedings of the 5th Eurographics Symposium on Geometry Processing. Eurographics Association, 39--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Atkinson, A. C. and Riani, M. 2000. Robust Diagnostic Regression Analysis. Springer.Google ScholarGoogle Scholar
  3. Avron, H., Sharf, A., Greif, C., and Cohen-Or, D. 2010. ℓ1-sparse reconstruction of sharp point set surfaces. ACM Trans. Graph. 29, 135:1--135:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boissonnat, J.-D. and Oudot, S. 2005. Provably good sampling and meshing of surfaces. Graph. Models 67, 405--451. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. Primo: coupled prisms for intuitive surface modeling. In Proceedings of the 4th Eurographics Symposium on Geometry Processing. 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cazals, F., Giesen, J., Pauly, M., and Zomorodian, A. 2005. Conformal alpha shapes. In Proceedings of the Eurographics/IEEE VGTC Symposium on Point-Based Graphics 0, 55--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, J. and Chen, B. 2008. Architectural modeling from sparsely scanned range data. Int. J, Comput. Vis. 78, 2--3, 223--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cignoni, P., Rocchini, C., and Scopigno, R. 1996. Metro: Measuring error on simplified surfaces. Tech. rep., Paris, France. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. ACM Trans. Graph. 23, 905--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Davis, T. A. 2011. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization. ACM Trans. Math. Softw. 38, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Debevec, P. E., Taylor, C. J., and Malik, J. 1996. Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. In Proceedings of SIGGRAPH 96. 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Demaine, E. and O'Rourke, J. 2007. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Edelsbrunner, H. and Mücke, E. P. 1994. Three-Dimensional alpha shapes. ACM Trans. Graph. 13, 43--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fleishman, S., Cohen-Or, D., and Silva, C. T. 2005. Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 24, 544--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. 2009. Manhattan-world stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1422--1429.Google ScholarGoogle Scholar
  16. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iWIRES: An analyze-and-edit approach to shape manipulation. ACM Trans. Graph. 28, 3, #33, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Garland, M. and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Graphite. 2010. http://alice.loria.fr/index.php/software.html.Google ScholarGoogle Scholar
  19. Jolliffe, I. T. 2002. Principal Component Analysis 2nd Ed. Springer, New York.Google ScholarGoogle Scholar
  20. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proceedings of the 4th Eurographics Symposium on Geometry Processing. Eurographics Association, 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kelley, C. T. 1999. Iterative Methods for Optimization. SIAM, Philadephia, PA.Google ScholarGoogle Scholar
  22. Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer, A., and Pottmann, H. 2008. Curved folding. ACM Trans. Graph. 27, 3, #75, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H.-P. 2001. Feature sensitive surface extraction from volume data. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 57--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Li, Y., Wu, X., Chrysanthou, Y., Sharf, A., Cohen-Or, D., and Mitra, N. J. 2011. GlobFit: Consistently fitting primitives by discovering global relations. ACM Trans. Graph. 30, 4, Article 52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. MeshLab. 2008. MeshLab:/An open=source 3D mesh processing System. http://meshlab.sourceforge.net.Google ScholarGoogle Scholar
  26. Musialski, P., Wonka, P., Aliaga, D. G., Wimmer, M., van Gool, L., and Purgathofer, W. 2012. A survey of urban reconstruction. In EUROGRAPHICS 2012 State of the Art Reports, Eurographics Association, 1--28.Google ScholarGoogle Scholar
  27. Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., and Chen, B. 2010. SmartBoxes for interactive urban reconstruction. ACM Trans. Graph. 29, 93:1--93:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. 2008. Discovering structural regularity in 3D geometry. ACM Trans. Graph. 27, 3, #43, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pointools Ltd. 2011. Pointools plugin for sketchup. http://www.pointools. com/pointools-plug-in-for-sketchup.php.Google ScholarGoogle Scholar
  30. Pottmann, H., Huang, Q.-X., Yang, Y.-L., and Hu, S.-M. 2006. Geometry and convergence analysis of algorithms for registration of 3D shapes. Int. J. Comput. Vis. 67, 277--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rousseeuw, P. J. and Leroy, A. M. 1987. Robust Regression and Outlier Detection. John Wiley&Sons, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Salman, N., Yvinec, M., and Merigot, Q. 2010. Feature preserving mesh generation from 3D point clouds. Comput. Graph. Forum 29, 5, 1623--1632.Google ScholarGoogle ScholarCross RefCross Ref
  33. Schindler, K. and Bauer, J. 2003. A model-based method for building reconstruction. In Proceedings of the 1st IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis. 74-- 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Schnabel, R., Degener, P., and Klein, R. 2009. Completion and reconstruction with primitive shapes. Comput. Graph. Forum 28, 2, 503--512.Google ScholarGoogle ScholarCross RefCross Ref
  35. Schnabel, R., Wahl, R., and Klein, R. 2007. Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum 26, 2, 214--226.Google ScholarGoogle ScholarCross RefCross Ref
  36. Sinha, S. N., Steedly, D., Szeliski, R., Agrawala, M., and Pollefeys, M. 2008. Interactive 3D architectural modeling from unordered photo collections. ACM Trans. Graph. 27, 159:1--159:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Strecha, C., von Hansen, W., Gool, L. J. V., Fua, P., and Thoennessen, U. 2008. On benchmarking camera calibration and multi-view stereo for high resolution imagery. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  38. van den Hengel, A., Dick, A., Thormählen, T., Ward, B., and Torr, P. H. S. 2007. VideoTrace: Rapid interactive scene modelling from video. ACM Trans. Graph. 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Vanegas, C. A., Aliaga, D. G., and Benes, B. 2010. Building reconstruction using Manhattan-world grammars. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). 358--365.Google ScholarGoogle Scholar
  40. Werner, T. and Zisserman, A. 2002. New techniques for automated architectural reconstruction from photographs. In Proceedings of European Conference on Computer Vision (ECCV). 541--555. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. O-snap: Optimization-based snapping for modeling architecture

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 1
          January 2013
          125 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2421636
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 February 2013
          • Accepted: 1 May 2012
          • Revised: 1 April 2012
          • Received: 1 November 2011
          Published in tog Volume 32, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader