skip to main content
research-article

Adaptive progressive photon mapping

Published:30 April 2013Publication History
Skip Abstract Section

Abstract

This article introduces a novel locally adaptive progressive photon mapping technique which optimally balances noise and bias in rendered images to minimize the overall error. It is the result of an analysis of the radiance estimation in progressive photon mapping. As a first step, we establish a connection to the field of recursive estimation and regression in statistics and derive the optimal estimation parameters for the asymptotic convergence of existing approaches. Next, we show how to reformulate photon mapping as a spatial regression in the measurement equation of light transport. This reformulation allows us to derive a novel data-driven bandwidth selection technique for estimating a pixel's measurement. The proposed technique possesses attractive convergence properties with finite numbers of samples, which is important for progressive rendering, and it also provides better results for quasi-converged images. Our results show the practical benefits of using our adaptive method.

Skip Supplemental Material Section

Supplemental Material

tp154.mp4

References

  1. Belcour, L. and Soler, C. 2011. Frequency-Based kernel estimation for progressive photon mapping. In ACM SIGGRAPH Asia Poster Program. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Cortes, C. and Vapnik, V. 1995. Support-Vector networks. Mach. Learn. 20, 3, 273--297. Google ScholarGoogle ScholarCross RefCross Ref
  3. Donoho, D., Johnstone, I., and Johnstone, I. M. 1993. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425--455.Google ScholarGoogle ScholarCross RefCross Ref
  4. Georgiev, I., Krivanek, J., and Slusallek, P. 2011. Boidirectional light transport with vertex merging. In SIGGRAPH Asia Sketches. Vol. 27, 27:1--27:2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Hachisuka, T., Jarosz, W., and Jensen, H. W. 2010. A progressive error estimation framework for photon density estimation. ACM Trans. Graph. 29, 6, 144:1--144:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hachisuka, T. and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Trans. Graph. 28, 5, 141:1--141:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hachisuka, T. and Jensen, H. W. 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph. 30, 5, 114:1--114:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hachisuka, T. Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. Graph. 27, 5, 130:1--130:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hackisuka, T., Pantaleoni, J., and Jensen, H. W. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. 31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hall, P. and Patil, P. 1994. On the efficiency of on-line density estimators. IEEE Trans. Inf. Theory 40, 5, 1504--1512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Havran, V., Bittner, J., Herzog, R., and Seidel, H.-P. 2005. Ray maps for global illumination. In Proceedings of the Eurographics Symposium on Rendering Techniques. 43--54, 311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jakob, W., Regg, C., and Jarosz, W. 2011. Progressive expectation maximization for hierarchical volumetric photon mapping. Comput. Graph. Forum 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P.-P., and Zwicker, M. 2011. Progressive photon beams. ACM Trans. Graph. 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jensen, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques. 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jones, M. C., Marron, J. S., and Sheather, S. J. 1996. A brief survey of bandwidth selection for density estimation. J. Amer. Statist. Assoc. 91, 433, 401--407.Google ScholarGoogle ScholarCross RefCross Ref
  16. Jones, M. C. and Sheather, S. J. 1991. Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statist. Probab. Lett. 11, 6, 511--514.Google ScholarGoogle ScholarCross RefCross Ref
  17. Katkovnik, V. and Shmulevich, I. 2002. Kernel density estimation with adaptive varying window size. Pattern Recogn. Lett. 23, 14, 1641--1648. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Knaus, C. and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 3, 25:1--25:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lafortune, E. P. and Willems, Y. D. 1993. Bi-Directional path tracing. In Proceedings of the 3rd International Conference on Computational Graphics and Visualization Techniques (COMPUGRAPHICS). 145--153.Google ScholarGoogle Scholar
  20. Mitchell, D. and Hanrahan, P. 1992. Illumination from curved reflectors. ACM Trans. Graph. 26, 2, 283--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Myszkowski, K. 1997. Lighting reconstruction using fast and adaptive density estimation techniques. In Proceedings of the Eurographics Workshop on Rendering Techniques. 251--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ngerng, M. H. 2011. Recursive nonparametric estimation of local first derivative under dependence conditions. Comm. Statist. Theory Methods 40, 7, 1159--1168.Google ScholarGoogle ScholarCross RefCross Ref
  23. Park, B. U. and Marron, J. S. 1990. Comparison of data-driven bandwidth selectors. J. Amer. Statist. Assoc. 85, 409, 66--72.Google ScholarGoogle ScholarCross RefCross Ref
  24. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: A general purpose ray tracing engine. ACM Trans. Graph. 29, 4, 66:1--66:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Statist. 33, 3, 1065--1076.Google ScholarGoogle ScholarCross RefCross Ref
  26. Perlin, K. 2002. Improving noise. ACM Trans. Graph. 21, 3, 681--682. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pharr, M. and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation 2nd Ed. Morgan Kaufmann, San Fransisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Reif, J. H., Tygar, J. D., and Yoshida, A. 1994. Computability and complexity of ray tracing. Discr. Comput. Geom. 11, 1, 265--288.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6, 159:1--159:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rudemo, M. 1982. Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9, 2, 65--78.Google ScholarGoogle Scholar
  31. Schjoth, L. 2009. Anisotropic density estimation in global illumination. Ph.D. thesis, University of Copenhagen.Google ScholarGoogle Scholar
  32. Schregle, R. 2003. Bias compensation for photon maps. Comput. Graph. Forum 22, 4, 729--742.Google ScholarGoogle ScholarCross RefCross Ref
  33. Katkovnik, V. and Shmulevich, I. 2002. Kernel density estimation with adaptive varying window size. Patt. Recog. Lett. 23, 14, 1641--1648. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Knaus, C. and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 3, 25:1--25:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Lafortune, E. P. and Willems, Y. D. 1993. Bi-Directional path tracing. In Proceedings of the 3rd International Conference on Computational Graphics and Visualization Techniques (COMPUGRAPHICS'93). 145--153.Google ScholarGoogle Scholar
  36. Mitchell, D. and Hanrahan, P. 1992. Illumination from curved reflectors. SIGGRAPH Comput. Graph. 26, 2, 283--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Myszkowski, K. 1997. Lighting reconstruction using flat and adaptive density estimation techniques. In Proceedings of the Eurographics Workshop on Rendering Techniques. 251--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ngerng, M. H. 2011. Recursive nonparametric estimation of local first derivative under dependence conditions. Comm. Statist. Theory Methods 40, 7, 1159--1168.Google ScholarGoogle ScholarCross RefCross Ref
  39. Park, B. U. and Marron, J. S. 1990. Comparison of data-driven bandwidth selectors. J. Amer. Statist. Assoc. 85, 409, 66--72.Google ScholarGoogle ScholarCross RefCross Ref
  40. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: A general purpose ray tracing engine. ACM Trans. Graph. 29, 4, 66:1--66:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Statist. 33, 3, 1065--1076.Google ScholarGoogle ScholarCross RefCross Ref
  42. Perlin, K. 2002. Improving noise. ACM Trans. Graph. 21, 3, 681--682. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Pharr, M. and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation 2nd Ed. Morgan Kaufmann, San Fransisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Reif, J. H., Tygar, J. D., and Yoshida, A. 1994. Computability and complexity of ray tracing. Discr. Comput. Geom. 11, 1, 265--288.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6, 159:1--159:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Rudemo, M. 1982. Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9, 2, 65--78.Google ScholarGoogle Scholar
  47. Schjoth, L. 2009. Anisotropic density estimation in global illumination. Ph.D. thesis, University of Copenhagen.Google ScholarGoogle Scholar
  48. Schregle, R. 2003. Bias compensation for photon maps. Comput. Graph. Forum 22, 4, 729--742.Google ScholarGoogle ScholarCross RefCross Ref
  49. Sheather, S. J. and Jones, M. C. 1991. A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Statist. Soc. B53, 3, 683--690.Google ScholarGoogle Scholar
  50. Shirley, P., Wade, B., Hubbard, P. M., Zareski, D., Walter, B., and Greenberg, D. P. 1995. Global illumination via density-estimation. In Proceedings of the 6th Workshop on Rendering. 219--230.Google ScholarGoogle Scholar
  51. Silverman, B. 1986. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall.Google ScholarGoogle Scholar
  52. Spencer, B. and Jones, M. W. 2009. Into the blue: Better caustics through photon relaxation. Comput. Graph. Forum 28, 2, 319--328.Google ScholarGoogle ScholarCross RefCross Ref
  53. Suykens, F. and Willems, Y. D. 2000. Density control for photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques. 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. van Eeden, C. 1985. Mean integrated squared error of kernel estimators when the density and its derivative are not necessarily continuous. Ann. Inst. Statist. Math. 37, 1, 461--472.Google ScholarGoogle ScholarCross RefCross Ref
  55. Veach, E. 1998. Robust monte carlo methods for light transport simulation. Ph.D. thesis, Stanford University. AA19837162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Veach, E. and Guibas, L. 1994. Bidirectional estimators for light transport. In Proceedings of the Eurographics Rendering Workshop. 147--162.Google ScholarGoogle Scholar
  57. Vorba, J. 2011. Bidirectional photon mapping. In Proceedings of the 15th Central European Seminar on Computer Graphics. 25--32.Google ScholarGoogle Scholar
  58. Walter, B. J. 1998. Density estimation techniques for global illumination. Ph.D. thesis, AA19900037, Cornell University, Ithaca, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Wand, M. P. and Jones, M. C. 1994. Multivariate plug-in bandwidth selection. Comput. Statist. 9, 97--116.Google ScholarGoogle Scholar
  60. Wolverton, C. and Wagner, T. 1969. Recursive estimates of probability densities. IEEE Trans. Syst. Sci. Cybernet. 5, 3, 246--247.Google ScholarGoogle ScholarCross RefCross Ref
  61. Wong, K. W. and Wang, W. 2005. Adaptive density estimation using an orthogonal series for global illumination. Comput. Graph. 29, 5, 738--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Yamato, H. 1971. Sequential estimation of a continuous probability density function and mode. Bull. Math. Statist. 14, 1--12.Google ScholarGoogle Scholar

Index Terms

  1. Adaptive progressive photon mapping

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 2
      April 2013
      134 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2451236
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 April 2013
      • Revised: 1 November 2012
      • Accepted: 1 November 2012
      • Received: 1 April 2012
      Published in tog Volume 32, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader