Abstract
This article describes a Lagrangian finite element method that simulates the behavior of liquids and solids in a unified framework. Local mesh improvement operations maintain a high-quality tetrahedral discretization even as the mesh is advected by fluid flow. We conserve volume and momentum, locally and globally, by assigning to each element an independent rest volume and adjusting it to correct for deviations during remeshing and collisions. Incompressibility is enforced with per-node pressure values, and extra degrees of freedom are selectively inserted to prevent pressure locking. Topological changes in the domain are explicitly treated with local mesh splitting and merging. Our method models surface tension with an implicit formulation based on surface energies computed on the boundary of the volume mesh.
With this method we can model elastic, plastic, and liquid materials in a single mesh, with no need for explicit coupling. We also model heat diffusion and thermoelastic effects, which allow us to simulate phase changes. We demonstrate these capabilities in several fluid simulations at scales from millimeters to meters, including simulations of melting caused by external or thermoelastic heating.
Supplemental Material
Available for Download
Supplemental movie and image files for, Perceptual models of viewpoint preference
- Adams, B. and Wicke, M. 2009. Meshless approximation methods and applications in physics based modeling and animation. In Eurographics Tutorials. 213--239.Google Scholar
- Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1, 19--38. Google Scholar
Digital Library
- Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, 16:1--16:8. Google Scholar
Digital Library
- Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated SPH for deformable solids. In Proceedings of the Eurographics Workshop on Natural Phenomena. 27--34. Google Scholar
Digital Library
- Belytschko, T. and Glaum, L. W. 1979. Application of higher order corotational stretch theories to nonlinear finite element analysis. Comput. Struct. 10, 1--2, 175--182.Google Scholar
Cross Ref
- Belytschko, T., Krongauz, Y., Organ, D., and Fleming, M. 1996. Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engin. 139, 1, 3--47.Google Scholar
Cross Ref
- Bielser, D., Maiwald, V. A., and Gross, M. H. 1999. Interactive cuts through 3-dimensional soft tissue. Comput. Graph. Forum 18, 3, 31--38.Google Scholar
Cross Ref
- Brackbill, J., Kothe, D., and Zemach, C. 1992. A continuum method for modeling surface tension. J. Comput. Phys. 100, 335--354. Google Scholar
Digital Library
- Bro-Nielsen, M. and Cotin, S. 1996. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15, 3, 57--66.Google Scholar
Cross Ref
- Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4, 1--9. Google Scholar
Digital Library
- Brochu, T. and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472--2493. Google Scholar
Digital Library
- Budd, C. J., Huang, W., and Russell, R. D. 2009. Adaptivity with moving grids. In Acta Numerica 2009, Volume 18, 1--131.Google Scholar
- Caboussat, A., Clausen, P., and Rappaz, J. 2010. Numerical simulation of two-phase flow with interface tracking by adaptive Eulerian grid subdivision. Math. Comput. Model. 55, 490--504.Google Scholar
Cross Ref
- Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. A multiresolution framework for dynamic deformations. In Proceedings of the Symposium on Computer Animation. 41--48. Google Scholar
Digital Library
- Cardoze, D., Cunha, A., Miller, G. L., Phillips, T., and Walkington, N. J. 2004. A Bézier-based approach to unstructured moving meshes. In Proceedings of the 20th Annual Symposium on Computational Geometry. 310--319. Google Scholar
Digital Library
- Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3, 377--384. Google Scholar
Digital Library
- Carlson, M., Mucha, P. J., Van Horn III, R. B., and Turk, G. 2002. Melting and flowing. In Proceedings of the Symposium on Computer Animation. 167--174. Google Scholar
Digital Library
- Chen, D. T. and Zeltzer, D. 1992. Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'92). 89--98. Google Scholar
Digital Library
- Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K. K., Goldberg, K., Shewchuk, J. R., and O'Brien, J. F. 2009. Interactive simulation of surgical needle insertion and steering. ACM Trans. Graph. 28, 3, 88:1--88:10. Google Scholar
Digital Library
- Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proceedings of the Symposium on Computer Animation. 219--228. Google Scholar
Digital Library
- Chentanez, N., Goktekin, T. G., Feldman, B. E., and O'Brien, J. F. 2006. Simultaneous coupling of fluids and deformable bodies. In Proceedings of the Symposium on Computer Animation. 83--89. Google Scholar
Digital Library
- Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J. 2001. Concepts and Applications of Finite Element Analysis 4th Ed. John Wiley & Sons, New York. Google Scholar
Digital Library
- Cremonesi, M., Frangi, A., and Perego, U. 2011. A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput. Struct. 89, 11--12, 1086--1093. Google Scholar
Digital Library
- Dai, M. and Smith, D. P. 2005. Adaptive tetrahedral meshing in free-surface flow. J. Comput. Phys. 208, 1, 228--252. Google Scholar
Digital Library
- Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. 2001. Dynamic real-time deformations using space & time adaptive sampling. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). 31--36. Google Scholar
Digital Library
- Dierkes, U., Hildebrandt, S., Kuester, A., and Wohlrab, O. 1992. Minimal Surfaces (I). Springer.Google Scholar
- Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002a. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1, 83--116. Google Scholar
Digital Library
- Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002b. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736--744. Google Scholar
Digital Library
- Erleben, K., Misztal, M. K., and Bærentzen, J. A. 2011. Mathematical foundation of the optimization-based fluid animation method. In Proceedings of the Symposium on Computer Animation. 101--110. Google Scholar
Digital Library
- Etzmuss, O., Keckeisen, M., and Strasser, W. 2003. A fast finite element solution for cloth modelling. In Proceedings of the Pacific Graphics Conference. 244--251. Google Scholar
Digital Library
- Feldman, B. E., O'Brien, J. F., and Klingner, B. M. 2005a. Animating gases with hybrid meshes. ACM Trans. Graph. 24, 3, 904--909. Google Scholar
Digital Library
- Feldman, B. E., O'Brien, J. F., Klingner, B. M., and Goktekin, T. G. 2005b. Fluids in deforming meshes. In Proceedings of the Symposium on Computer Animation. 255--260. Google Scholar
Digital Library
- Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. ACM Trans. Graph. 20, 3, 23--30.Google Scholar
- Foster, N. and Metaxas, D. 1996. Realistic animation of liquids. Graph. Model. Image Process. 58, 5, 471--483. Google Scholar
Digital Library
- Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the Symposium on Computer Animation. 133--138. Google Scholar
Digital Library
- Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468. Google Scholar
Digital Library
- Gourret, J.-P., Thalmann, N. M., and Thalmann, D. 1989. Simulation of object and human skin deformations in a grasping task. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'89). 21--30. Google Scholar
Digital Library
- Gray, A. 1998. Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press. Google Scholar
Digital Library
- Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A simple framework for adaptive simulation. ACM Trans. Graph. 21, 3, 281--290. Google Scholar
Digital Library
- Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 3, 973--981. Google Scholar
Digital Library
- Guennebaud, G. and Gross, M. 2007. Algebraic point set surfaces. ACM Trans. Graph. 26, 3, 23:1--23:9. Google Scholar
Digital Library
- Harlow, F. H. and Welch, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 12, 2182--2189.Google Scholar
Cross Ref
- Hong, J.-M. and Kim, C.-H. 2003. Animation of bubbles in fluid. Comput. Graph. Forum 22, 3, 253--262.Google Scholar
Cross Ref
- Hong, J.-M. and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915--920. Google Scholar
Digital Library
- Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3, 13:1--13:6. Google Scholar
Digital Library
- Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the Symposium on Computer Animation. 131--140. Google Scholar
Digital Library
- Jones, M. T. and Plassmann, P. E. 1997. Adaptive refinement of unstructured finite-element meshes. Finit. Element Anal. Des. 25, 41--60. Google Scholar
Digital Library
- Kamrin, K. and Nave, J.-C. 2009. An Eulerian approach to the simulation of deformable solids: Application to finite-strain elasticity. http://arxiv.org/pdf/0901.3799.pdf.Google Scholar
- Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 3, 50:1--50:10. Google Scholar
Digital Library
- Keiser, R., Adams, B., Gaser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In Proceedings of the Eurographics Symposium on Point-Based Graphics. 125--133. Google Scholar
Digital Library
- Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3, 51:1--51:8. Google Scholar
Digital Library
- Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3, 820--825. Google Scholar
Digital Library
- Klingner, B. M. and Shewchuk, J. R. 2007. Aggressive tetrahedral mesh improvement. In Proceedings of the 16th International Meshing Roundtable. 3--23.Google Scholar
- Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H.-P. 2001. Feature sensitive surface extraction from volume data. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). 57--66. Google Scholar
Digital Library
- Kucharik, M., Garimella, R. V., Schofield, S. P., and Shashkov, M. J. 2010. A comparative study of interface reconstruction methods for multi-material ALE simulations. J. Comput. Phys. 229, 7, 2432--2452. Google Scholar
Digital Library
- Lamb, H. 1932. Hydrodynamics. Cambridge University Press.Google Scholar
- Landau, L. and Lifshitz, E. 1970. Theory of Elasticity. Pergamon Press, New York.Google Scholar
- Levin, D. I. W., Litven, J., Jones, G. L., Sueda, S., and Pai, D. K. 2011. Eulerian solid simulation with contact. ACM Trans. Graph. 30, 4, 36:1--36:10. Google Scholar
Digital Library
- Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 3, 457--462. Google Scholar
Digital Library
- Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. 2006a. Melting and burning solids into liquids and gases. IEEE Trans. Vis. Comput. Graph. 12, 3, 343--352. Google Scholar
Digital Library
- Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006b. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819. Google Scholar
Digital Library
- Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14, 4, 797--804. Google Scholar
Digital Library
- Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. Comput. Graph. Forum 27, 5, 1521--1529. Google Scholar
Digital Library
- Mauch, S., Noels, L., Zhao, Z., and Radovitzky, R. A. 2006. Lagrangian simulation of penetration environments via mesh healing and adaptive optimization. In Proceedings of the 25th Army Science Conference.Google Scholar
- Miller, G. and Pearce, A. 1989. Globular dynamics: A connected particle system for animating viscous fluids. Comput. Graph. 13, 3, 305--309.Google Scholar
Cross Ref
- Misztal, M. K., Bridson, R., Erleben, K., Bærentzen, J. A., and Anton, F. 2010. Optimization-based fluid simulation on unstructured meshes. In Proceedings of the 7th Workshop on Virtual Reality Interaction and Physical Simulation. 11--20.Google Scholar
- Misztal, M. K., Erleben, K., Bargteil, A. W., Fursund, J., Christensen, B. B., Bærentzen, J. A., and Bridson, R. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proceedings of the Symposium on Computer Animation. 97--106. Google Scholar
Digital Library
- Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385--392. Google Scholar
Digital Library
- Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proceedings of the Symposium on Computer Animation. 49--54. Google Scholar
Digital Library
- Müller, M. and Gross, M. H. 2004. Interactive virtual materials. In Proceedings of the Graphics Interface Conference. 239--246. Google Scholar
Digital Library
- Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the Symposium on Computer Animation. 141--151. Google Scholar
Digital Library
- Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-time simulation of deformation and fracture of stiff materials. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation. 113--124. Google Scholar
Digital Library
- Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6, 152:1--152:10. Google Scholar
Digital Library
- Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3, 52:1--52:9. Google Scholar
Digital Library
- Nour-Omid, B. and Rankin, C. 1991. Finite rotation analysis and consistent linearization using projectors. Comput. Methods Appl. Mech. Engin. 93, 3, 353--384.Google Scholar
Cross Ref
- O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291--294. Google Scholar
Digital Library
- O'Brien, J. F. and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). 137--146. Google Scholar
Digital Library
- Oden, J. T. and Demkowicz, L. F. 1989. Advances in adaptive improvements: A survey of adaptive finite element methods in computational mechanics. In State-of-the-Art Surveys on Computational Mechanics. The American Society of Mechanical Engineers, 441--467.Google Scholar
- Osher, S. and Fedkiw, R. 2003. The Level Set Method and Dynamic Implicit Surfaces. Springer.Google Scholar
- Otaduy, M. A., Germann, D., Redon, S., and Gross, M. 2007. Adaptive deformations with fast tight bounds. In Proceedings of the Symposium on Computer Animation. 181--190. Google Scholar
Digital Library
- Parker, E. G. and O'Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Proceedings of the Symposium on Computer Animation. 156--166. Google Scholar
Digital Library
- Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957--964. Google Scholar
Digital Library
- Rayleigh, J. 1879. On the capillary phenomena of jets. Proc. Roy. Soc. London 29, 71--97.Google Scholar
Cross Ref
- Scardovelli, R. and Zaleski, S. 1999. Direct numerical simulation of free surface and interfacial flows. Ann. Rev. Fluid Mech. 31, 567--603.Google Scholar
Cross Ref
- Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proceedings of the Symposium on Computer Animation. 81--90. Google Scholar
Digital Library
- Sin, F., Bargteil, A. W., and Hodgins, J. K. 2009. A point-based method for animating incompressible flow. In Proceedings of the Symposium on Computer Animation. 247--255. Google Scholar
Digital Library
- Smith, J., Witkin, A., and Baraff, D. 2001. Fast and controllable simulation of the shattering of brittle objects. Comput. Graph. Forum 20, 2, 81--91.Google Scholar
Cross Ref
- Stam, J. 1999. Stable fluids. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). 121--128. Google Scholar
Digital Library
- Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In Proceedings of the Symposium on Computer Animation. 63--72. Google Scholar
Digital Library
- Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Trans. Graph. 29, 4, 48:1--48:10. Google Scholar
Digital Library
- Wang, H., Mucha, P. J., and Turk, G. 2005. Water drops on surfaces. ACM Trans. Graph. 24, 3, 921--929. Google Scholar
Digital Library
- Wang, H., O'Brien, J., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph. 29, 6, 156:1--156:10. Google Scholar
Digital Library
- Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 4, 49:1--49:11. Google Scholar
Digital Library
- Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Trans. Graph. 28, 3, 76:1--76:10. Google Scholar
Digital Library
- Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. 29, 4, 50:1--50:8. Google Scholar
Digital Library
- Wojtan, C. and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3, 47:1--47:8. Google Scholar
Digital Library
- Zhang, Y., Wang, H., Wang, S., Tong, Y., and Zhou, K. 2012. A deformable surface model for real-time water drop animation. IEEE Trans. Vis. Comput. Graph. 18, 1281--1289. Google Scholar
Digital Library
- Zhu, Q.-H., Chen, Y., and Kaufman, A. 1998. Real-time biomechanically-based muscle volume deformation using FEM. Comput. Graph. Forum 17, 3, 275--284.Google Scholar
Cross Ref
Index Terms
Simulating liquids and solid-liquid interactions with lagrangian meshes
Recommendations
Bubbling and frothing liquids
We present a discrete particle based method capable of creating very realistic animations of bubbles in fluids. It allows for the generation (nucleation) of bubbles from gas dissolved in the fluid, the motion of the discrete bubbles including bubble ...
A new particle method for simulating breakup of liquid jets
A corrected smoothed particle hydrodynamics (CSPH) method for simulating two-phase flows including surface tension is presented. The effects of the instability in the compressional regime and particle deficiency are suppressed by adopting a new ...
Bubbling and frothing liquids
SIGGRAPH '07: ACM SIGGRAPH 2007 papersWe present a discrete particle based method capable of creating very realistic animations of bubbles in fluids. It allows for the generation (nucleation) of bubbles from gas dissolved in the fluid, the motion of the discrete bubbles including bubble ...





Comments