skip to main content
research-article

Wave-based sound propagation in large open scenes using an equivalent source formulation

Published:30 April 2013Publication History
Skip Abstract Section

Abstract

We present a novel approach for wave-based sound propagation suitable for large, open spaces spanning hundreds of meters, with a small memory footprint. The scene is decomposed into disjoint rigid objects. The free-field acoustic behavior of each object is captured by a compact per-object transfer function relating the amplitudes of a set of incoming equivalent sources to outgoing equivalent sources. Pairwise acoustic interactions between objects are computed analytically to yield compact inter-object transfer functions. The global sound field accounting for all orders of interaction is computed using these transfer functions. The runtime system uses fast summation over the outgoing equivalent source amplitudes for all objects to auralize the sound field for a moving listener in real time. We demonstrate realistic acoustic effects such as diffraction, low-passed sound behind obstructions, focusing, scattering, high-order reflections, and echoes on a variety of scenes.

Skip Supplemental Material Section

Supplemental Material

tp141.mp4

References

  1. Abramowitz, M. and Stegun, I. 1964. Handbook of Mathematical Functions 5th Ed. Dover, New York.Google ScholarGoogle Scholar
  2. Allen, J. B. and Berkley, D. A. 1979. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Amer. 65, 4, 943--950.Google ScholarGoogle ScholarCross RefCross Ref
  3. Antani, L., Chandak, A., Taylor, M., and Manocha, D. 2012. Direct-to-Indirect acoustic radiance transfer. IEEE Trans. Vis. Comput. Graph. 18, 2, 261--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic shells: A practical nonlinear sound model for near-rigid thin shells. In Proceedings of the SIGGRAPH Asia Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cheng, A. and Cheng, D. 2005. Heritage and early history of the boundary element method. Engin. Anal. Bound. Elements 29, 3, 268--302.Google ScholarGoogle ScholarCross RefCross Ref
  6. Doicu, A., Eremin, Y. A., and Wriedt, T. 2000. Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources 1st Ed. Academic Press.Google ScholarGoogle Scholar
  7. Fairweather, G. 2003. The method of fundamental solutions for scattering and radiation problems. Engin. Anal. Bound. Elements 27, 7, 759--769.Google ScholarGoogle ScholarCross RefCross Ref
  8. Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West, J. 1998. A beam tracing approach to acoustic modeling for interactive virtual environments. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'98). 21--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gumerov, N. A. and Duraiswami, R. 2009. A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation. J. Acoust. Soc. Amer. I25, 1, 191--205.Google ScholarGoogle ScholarCross RefCross Ref
  10. Hobson, E. W. 1955. The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press.Google ScholarGoogle Scholar
  11. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: Output-Sensitive, accurate sound generation for geometrically complex vibration sources. In ACM SIGGRAPH Papers. ACM Press, New York, 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Krokstad, A., Strom, S., and Sorsdal, S. 1968. Calculating the acoustical room response by the use of a ray tracing technique. J. Sound Vibr. 8, 1, 118--125.Google ScholarGoogle ScholarCross RefCross Ref
  13. Kropp, W. and Svensson, P. U. 1995. Application of the time domain formulation of the method of equivalent sources to radiation and scattering problems. Acta Acustica United Acustica 81, 6, 528--543.Google ScholarGoogle Scholar
  14. Lentz, T., Schroder, D., Vorlander, M., and Assenmacher, I. 2007. Virtual reality system with integrated sound field simulation and reproduction. EURASIP J. Appl. Signal Process. 2007, 1, 187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Liu, Q. H. 1997. The pstd algorithm: A time-domain method combining the pseudospectral technique and perfectly matched layers. J. Acoust. Soc. Amer. 101, 5, 3182.Google ScholarGoogle ScholarCross RefCross Ref
  16. Liu, Y., Shen, L., and Bapat, M. 2009. Development of the fast multipole boundary element method for acoustic wave problems. In Recent Advances in Boundary Element Methods, Springer, 287--303.Google ScholarGoogle Scholar
  17. Manocha, D., Calamia, P., Lin, M. C., Manocha, D., Savioja, L., and Tsingos, N. 2009. Interactive sound rendering. In ACM SIGGRAPH Courses. ACM Press, New York, 15:1--15:338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mehra, R., Raghuvanshi, N., Savioja, L., Lin, M. C., and Manocha, D. 2012. An efficient gpu-based time domain solver for the acoustic wave equation. Appl. Acoust. 73, 2, 83--94.Google ScholarGoogle ScholarCross RefCross Ref
  19. Ochmann, M. 1995. The source simulation technique for acoustic radiation problems. Acustica 81, 512--527.Google ScholarGoogle Scholar
  20. Ochmann, M. 1999. The full-field equations for acoustic radiation and scattering. J. Acoust. Soc. Amer. 105, 5, 2574--2584.Google ScholarGoogle ScholarCross RefCross Ref
  21. Pavic, G. 2006. A technique for the computation of sound radiation by vibrating bodies using multipole substitute sources. Acta Acustica United Acustica 92, 15, 112--126.Google ScholarGoogle Scholar
  22. Pierce, A. D. 1989. Acoustics: An Introduction to Its Physical Principles and Applications. Acoustical Society of America.Google ScholarGoogle Scholar
  23. Raghuvanshi, N., Narain, R., and Lin, M. C. 2009. Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Trans. Vis. Comput. Graph. 15, 5, 789--801. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M. C., and Govindaraju, N. K. 2010. Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Trans. Graph. 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sakamoto, S., Ushiyama, A., and Nagatomo, H. 2006. Numerical analysis of sound propagation in rooms using finite difference time domain method. J. Acoust. Soc. Amer. 120, 5, 3008.Google ScholarGoogle ScholarCross RefCross Ref
  26. Savioja, L. 2010. Real-Time 3D finite-difference time-domain simulation of mid-frequency room acoustics. In Proceedings of the 13th International Conference on Digital Audio Effects (DAFx'10).Google ScholarGoogle Scholar
  27. Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. 2007. The room acoustic rendering equation. J. Acoust. Soc. Amer. 122, 3, 1624--1635.Google ScholarGoogle ScholarCross RefCross Ref
  28. Siltanen, S., Lokki, T., and Savioja, L. 2009. Frequency domain acoustic radiance transfer for real-time auralization. Acta Acustica United Acustica 95, 1, 106--117.Google ScholarGoogle ScholarCross RefCross Ref
  29. Southern, A., Siltanen, S., and Savioja, L. 2011. Spatial room impulse responses with a hybrid modeling method. Audio Engin. Soc. Convent. 130.Google ScholarGoogle Scholar
  30. Svensson, U. P., Fred, R. I., and Vanderkooy, J. 1999. An analytic secondary source model of edge diffraction impulse responses. J. Acoust. Soc. Amer. 106, 2331--2344.Google ScholarGoogle ScholarCross RefCross Ref
  31. Taflove, A. and Hagness, S. C. 2005. Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd Ed. Artech House.Google ScholarGoogle Scholar
  32. Takala, T. and Hahn, J. 1992. Sound rendering. ACM Trans. Graph. 26, 2, 211--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Taraldsen, G. and Jonasson, H. 2011. Aspects of ground effect modeling. J. Acoust. Soc. Amer. 129, 1, 47--53.Google ScholarGoogle ScholarCross RefCross Ref
  34. Taylor, M. T., Chandak, A., Antani, L., and Manocha, D. 2009. RESound: Interactive sound rendering for dynamic virtual environments. In Proceedings of the ACM Conference on Multimedia (MM'09). ACM Press, New York, 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Thompson, L. L. 2006. A review of finite-element methods for time-harmonic acoustics. J. Acoust. Soc. Amer. 119, 3, 1315--1330.Google ScholarGoogle ScholarCross RefCross Ref
  36. Thompson, L. L. and Pinsky, P. M. 2004. Acoustics. John Wiley & Sons.Google ScholarGoogle Scholar
  37. Tsingos, N. 2009. Pre-Computing geometry-based reverberation effects for games. In Proceedings of the 35th AES Conference on Audio for Games.Google ScholarGoogle Scholar
  38. Tsingos, N., Dachsbacher, C., Lefebvre, S., and Dellepiane, M. 2007. Instant sound scattering. In Proceedings of the Eurographics Symposium on Rendering Techniques. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). ACM Press, New York, 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tsingos, N. and Gascuel, J. D. 1997. A general model for the simulation of room acoustics based on hierarchical radiosity. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'97). ACM Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Vorlander, M. 1989. Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm. J. Acoust. Soc. Amer. 86, 1, 172--178.Google ScholarGoogle ScholarCross RefCross Ref
  42. Waterman, P. C. 2009. T-Matrix methods in acoustic scattering. J. Acoust. Soc. Amer. 125, 1, 42--51.Google ScholarGoogle ScholarCross RefCross Ref
  43. Yee, K. 1966. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Trans. Antenn. Propag. 14, 3, 302--307.Google ScholarGoogle ScholarCross RefCross Ref
  44. Zheng, C. and James, D. L. 2010. Rigid-Body fracture sound with precomputed soundbanks. In ACM SIGGRAPH Papers. ACM Press, New York, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zienkiewicz, O. C., Taylor, R. L., and Nithiarasu, P. 2006. The Finite Element Method for Fluid Dynamics 6th Ed. Butterworth-Heinemann.Google ScholarGoogle Scholar

Index Terms

  1. Wave-based sound propagation in large open scenes using an equivalent source formulation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 32, Issue 2
            April 2013
            134 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2451236
            Issue’s Table of Contents

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 April 2013
            • Accepted: 1 October 2012
            • Revised: 1 September 2012
            • Received: 1 April 2012
            Published in tog Volume 32, Issue 2

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader