skip to main content
research-article

L1-medial skeleton of point cloud

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We introduce L1-medial skeleton as a curve skeleton representation for 3D point cloud data. The L1-median is well-known as a robust global center of an arbitrary set of points. We make the key observation that adapting L1-medians locally to a point set representing a 3D shape gives rise to a one-dimensional structure, which can be seen as a localized center of the shape. The primary advantage of our approach is that it does not place strong requirements on the quality of the input point cloud nor on the geometry or topology of the captured shape. We develop a L1-medial skeleton construction algorithm, which can be directly applied to an unoriented raw point scan with significant noise, outliers, and large areas of missing data. We demonstrate L1-medial skeletons extracted from raw scans of a variety of shapes, including those modeling high-genus 3D objects, plant-like structures, and curve networks.

Skip Supplemental Material Section

Supplemental Material

tp166.mp4

References

  1. Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y. 2008. Skeleton extraction by mesh contraction. ACM Trans. on Graph (Proc. of SIGGRAPH) 27, 3, 44:1--44:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Avron, H., Sharf, A., Greif, C., and Cohen-Or, D. 2010. l1-sparse reconstruction of sharp point set surfaces. ACM Trans. on Graph 29, 5, 135:1--135:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Blum, H. 1967. A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form, 362--380.Google ScholarGoogle Scholar
  4. Bucksch, A., Lindenbergh, R., and Menenti, M. 2010. Skeltre: Robust skeleton extraction from imperfect point clouds. The Visual Computer 26, 10, 1283--1300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., and Su, Z. 2010. Point cloud skeletons via laplacian based contraction. Proc. IEEE Int. Conf. on Shape Modeling and Applications, 187--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chuang, M., and Kazhdan, M. 2011. Fast mean-curvature flow via finite-elements tracking. Computer Graphics Forum (Proc. of Eurographics) 30, 6, 1750--1760.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chung, J.-h., Tsai, C.-h., and Ko, M.-c. 2000. Skeletonization of three-dimensional object using generalized potential field. IEEE Trans. Pat. Ana. & Mach. Int. 22, 11, 1241--1251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cornea, N. D., Silver, D., and Min, P. 2007. Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. & Comp. Graphics 13, 3, 530--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Daszykowski, M., Kaczmarek, K., Heyden, Y. V., and Walczak, B. 2007. Robust statistics in data analysis - a review: Basic concept. Chemometrics and Intelligent Lab. Sys. 85, 2, 203--219.Google ScholarGoogle ScholarCross RefCross Ref
  10. Dey, T. K., and Sun, J. 2006. Defining and computing curve-skeletons with medial geodesic function. Symp. on Geom. Proc., 143--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fukunaga, K., and Hostetler, L. D. 1975. The estimation of the gradient of a density function with applications in pattern recognition. IEEE Trans. Info. Theo. 21, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gander, W., Golub, G. H., and Strebel, R. 1994. Least squares fitting of circles and ellipses. BIT Numerical Mathematics 34, 558--578.Google ScholarGoogle ScholarCross RefCross Ref
  13. Hassouna, M. S., and Farag, A. A. 2009. Variational curve skeletons using gradient vector flow. IEEE Trans. Pat. Ana. & Mach. Int. 31, 12, 2257--2274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunil, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. Proc. of SIGGRAPH, 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Huang, H., Li, D., Zhang, H., Ascher, U., and Cohen-Or, D. 2009. Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. on Graph (Proc. of SIGGRAPH Asia) 28, 5, 176:1--176:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jiang, W., Xu, K., Cheng, Z., Martin, R. R., and Dang, G. 2013. Curve skeleton extraction by coupled graph contraction and surface clustering. Graphical Models 75, 3, 137--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. on Graph (Proc. of SIGGRAPH) 22, 3, 954--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Li, G., Liu, L., Zheng, H., and Mitra, N. J. 2010. Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. on Graph (Proc. of SIGGRAPH Asia) 29, 5, 152:1--152:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H. 2007. Parameterization-free projection for geometry reconstruction. ACM Trans. on Graph (Proc. of SIGGRAPH) 26, 3, 22:1--22:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., and El-sana, J. 2010. Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. on Graph (Proc. of SIGGRAPH Asia) 29, 6, 151:1--151:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lu, L., Lévy, B., and Wang, W. 2012. Centroidal voronoi tessellations for line segments and graphs. Computer Graphics Forum (Proc. of Eurographics) 31, 2, 775--784. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Milasevic, P., and Ducharme, G. R. 1987. Uniqueness of the spatial median. Ann. Statist. 15, 1332--1333.Google ScholarGoogle ScholarCross RefCross Ref
  23. Mullen, P., de Goes, F., Desbrun, M., Cohen-Steiner, D., and Alliez, P. 2010. Signing the unsigned: Robust surface reconstruction from raw pointsets. Computer Graphics Forum 29, 1733--1741.Google ScholarGoogle ScholarCross RefCross Ref
  24. Natali, M., Biasotti, S., Patan, G., and BiancaFalcidieno. 2011. Graph-based representations of point clouds. Graphical Models 73, 151--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sharf, A., Lewiner, T., Shamir, A., and Kobbelt, L. 2007. On-the-fly curve-skeleton computation for 3D shapes. Computer Graphics Forum 26, 323--328.Google ScholarGoogle ScholarCross RefCross Ref
  26. Siddiqi, K., and Pizer, S. 2009. Medial Representations: Mathematics, Algorithms and Applications. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Small, C. G. 1990. A survey of multidimensional medians. International Statistical Review 58, 3, 263--277.Google ScholarGoogle ScholarCross RefCross Ref
  28. Tagliasacchi, A., Zhang, H., and Cohen-Or, D. 2009. Curve skeleton extraction from incomplete point cloud. ACM Trans. on Graph (Proc. of SIGGRAPH) 28, 3, 71:1--71:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang, H. 2012. Mean curvature skeletons. Computer Graphics Forum (Proc. of Symposium on Geometry Processing) 31, 5, 1735--1744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Weber, A. 1909. Über den Standort der Industrie. Tübingen, J. C. B. Mohr (Paul Siebeck). English translation by C. J. Freidrich (1929): Alfred WebersTheory of the Location of Industries.Google ScholarGoogle Scholar
  31. Willcocks, C. G., and Li, F. W. B. 2012. Feature-varying skeletonization - intuitive control over the target feature size and output skeleton topology. The Visual Computer 28, 6-8, 775--785. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. L1-medial skeleton of point cloud

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader