skip to main content
research-article

Cubic mean value coordinates

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a new method for interpolating both boundary values and gradients over a 2D polygonal domain. Despite various previous efforts, it remains challenging to define a closed-form interpolant that produces natural-looking functions while allowing flexible control of boundary constraints. Our method builds on an existing transfinite interpolant over a continuous domain, which in turn extends the classical mean value interpolant. We re-derive the interpolant from the mean value property of biharmonic functions, and prove that the interpolant indeed matches the gradient constraints when the boundary is piece-wise linear. We then give closed-form formula (as generalized barycentric coordinates) for boundary constraints represented as polynomials up to degree 3 (for values) and 1 (for normal derivatives) over each polygon edge. We demonstrate the flexibility and efficiency of our coordinates in two novel applications, smooth image deformation using curved cage networks and adaptive simplification of gradient meshes.

Skip Supplemental Material Section

Supplemental Material

tp080.mp4

References

  1. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3d characters. ACM Transactions on Graphics 26, 3, 72:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Botsch, M., and Kobbelt, L. 2004. An intuitive framework for real-time freeform modeling. ACM Transactions on Graphics 23, 3, 630--634. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. 2010. Polygon Mesh Processing. A. K. Peters, Natick.Google ScholarGoogle Scholar
  4. Dyken, C., and Floater, M. S. 2009. Transfinite mean value interpolation. Computer Aided Geometric Design (CAGD) 26, 1, 117--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Farbman, Z., Hoffer, G., Lipman, Y., Cohen-Or, D., and Lischinski, D. 2009. Coordinates for instant image cloning. ACM Transactions on Graphics 28, 3, 67:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ferguson, J. 1964. Multivariable curve interpolation. Journal of the ACM 11, 2, 221--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Floater, M. S., and Schulz, C. 2008. Pointwise radial minimization: Hermite interpolation on arbitrary domains. Computer Graphics Forum 27, 5, 1505--1512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Floater, M. S., Hormann, K., and Kós, G. 2006. A general construction of barycentric coordinates over convex polygons. Advances in Computational Mathematics 24, 3, 311--331.Google ScholarGoogle ScholarCross RefCross Ref
  9. Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design (CAGD) 20, 1, 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Goyal, S., and Goyal, V. B. 2012. Mean value results for second and higher order partial differential equations. Applied Mathematical Sciences 6, 77-80, 3941--3957.Google ScholarGoogle Scholar
  11. Hormann, K., and Floater, M. S. 2006. Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics 25, 4, 1424--1441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hormann, K., and Sukumar, N. 2008. Maximum entropy coordinates for arbitrary polytopes. Computer Graphics Forum 27, 5, 1513--1520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Transactions on Graphics 30, 4, 78:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Transactions on Graphics 26, 3, 71:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics 24, 3, 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lai, Y.-K., Hu, S.-M., and Martin, R. R. 2009. Automatic and topology-preserving gradient mesh generation for image vectorization. ACM Transactions on Graphics 28, 3, 85:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Langer, T., and Seidel, H.-P. 2008. Higher order barycentric coordinates. Computer Graphics Forum 27, 2, 459--466.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Transactions on Graphics 27, 3, 78:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Manson, J., and Schaefer, S. 2010. Moving least squares coordinates. Computer Graphics Forum 29, 5, 1517--1524.Google ScholarGoogle ScholarCross RefCross Ref
  20. Manson, J., Li, K., and Schaefer, S. 2011. Positive Gordon-Wixom coordinates. Computer Aided Design 43, 11, 1422--1426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Meyer, M., Lee, H., Barr, A., and Desbrun, M. 2002. Generalized barycentric coordinates on irregular polygons. Journal of Graphics Tools 7, 1, 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., and Salesin, D. 2008. Diffusion curves: a vector representation for smooth-shaded images. ACM Transactions on Graphics 27, 3, 92:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  24. Polyanin, A. D. 2002. Handbook of linear partial differential equations for engineers and scientists. Chapman & Hall/CRC, London.Google ScholarGoogle Scholar
  25. Sun, J., Liang, L., Wen, F., and Shum, H.-Y. 2007. Image vectorization using optimized gradient meshes. ACM Transactions on Graphics 26, 3, 11:1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wachspress, E. 1975. A Rational Finite Element Basis. London: Academic Press.Google ScholarGoogle Scholar
  27. Weber, O., and Gotsman, C. 2010. Controllable conformal maps for shape deformation and interpolation. ACM Transactions on Graphics 29, 4, 78:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Weber, O., Ben-Chen, M., and Gotsman, C. 2009. Complex barycentric coordinates with applications to planar shape deformation. Computer Graphics Forum 28, 2, 587--597.Google ScholarGoogle ScholarCross RefCross Ref
  29. Weber, O., Ben-Chen, M., Gotsman, C., and Hormann, K. 2011. A complex view of barycentric mappings. Computer Graphics Forum 30, 5, 1533--1542.Google ScholarGoogle ScholarCross RefCross Ref
  30. Weber, O., Poranne, R., and Gotsman, C. 2012. Biharmonic coordinates. Computer Graphics Forum 31, 8, 2409--2422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Xia, T., Liao, B., and Yu, Y. 2009. Patch-based image vectorization with automatic curvilinear feature alignment. ACM Transactions on Graphics 28, 5, 115:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Cubic mean value coordinates

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader