skip to main content
research-article

Dense scene reconstruction with points of interest

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present an approach to detailed reconstruction of complex real-world scenes with a handheld commodity range sensor. The user moves the sensor freely through the environment and images the scene. An offline registration and integration pipeline produces a detailed scene model. To deal with the complex sensor trajectories required to produce detailed reconstructions with a consumer-grade sensor, our pipeline detects points of interest in the scene and preserves detailed geometry around them while a global optimization distributes residual registration errors through the environment. Our results demonstrate that detailed reconstructions of complex scenes can be obtained with a consumer-grade camera.

Skip Supplemental Material Section

Supplemental Material

tp119.mp4

References

  1. Agarwal, S., Snavely, N., Seitz, S. M., and Szeliski, R. 2010. Bundle adjustment in the large. In Proc. ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brown, B. J., and Rusinkiewicz, S. 2007. Global non-rigid alignment of 3-D scans. ACM Transactions on Graphics 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chen, Y., and Medioni, G. G. 1992. Object modelling by registration of multiple range images. Image and Vision Computing 10, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Comaniciu, D., and Meer, P. 2002. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cui, Y., Schuon, S., Chan, D., Thrun, S., and Theobalt, C. 2010. 3D shape scanning with a time-of-flight camera. In Proc. CVPR.Google ScholarGoogle Scholar
  7. Curless, B., and Levoy, M. 1996. A volumetric method for building complex models from range images. In Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., and Burgard, W. 2012. An evaluation of the RGB-D SLAM system. In IEEE International Conference on Robotics and Automation (ICRA).Google ScholarGoogle Scholar
  9. Fuhrmann, S., and Goesele, M. 2011. Fusion of depth maps with multiple scales. ACM Transactions on Graphics 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Furukawa, Y., and Ponce, J. 2010. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. 2010. Towards Internet-scale multi-view stereo. In Proc. CVPR.Google ScholarGoogle Scholar
  12. Goesele, M., Snavely, N., Curless, B., Hoppe, H., and Seitz, S. M. 2007. Multi-view stereo for community photo collections. In Proc. ICCV.Google ScholarGoogle Scholar
  13. Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. 2012. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. International Journal of Robotics Research 31, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Heredia, F., and Favier, R. 2012. Kinect Fusion extensions to large scale environments. http://www.pointclouds.org/blog/srcs/fheredia.Google ScholarGoogle Scholar
  15. Huber, D. F., and Hebert, M. 2003. Fully automatic registration of multiple 3D data sets. Image and Vision Computing 21, 7.Google ScholarGoogle ScholarCross RefCross Ref
  16. Khoshelham, K., and Elberink, S. O. 2012. Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors 12, 2.Google ScholarGoogle ScholarCross RefCross Ref
  17. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. 2011. g2o: A general framework for graph optimization. In IEEE International Conference on Robotics and Automation (ICRA).Google ScholarGoogle Scholar
  18. Microsoft. 2010. Kinect. http://www.xbox.com/en-us/kinect.Google ScholarGoogle Scholar
  19. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. 2011. KinectFusion: Real-time dense surface mapping and tracking. In IEEE International Symposium on Mixed and Augmented Reality (ISMAR). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pollefeys, M., Gool, L. J. V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., and Koch, R. 2004. Visual modeling with a hand-held camera. International Journal of Computer Vision 59, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pollefeys, M., Nistér, D., Frahm, J.-M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S. J., Merrell, P., Salmi, C., Sinha, S. N., Talton, B., Wang, L., Yang, Q., Stewénius, H., Yang, R., Welch, G., and Towles, H. 2008. Detailed real-time urban 3D reconstruction from video. International Journal of Computer Vision 78, 2--3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. PrimeSense. 2012. PrimeSense unveils Capri. http://www.primesense.com/news/primesense-unveils-capri/.Google ScholarGoogle Scholar
  23. Pulli, K. 1999. Multiview registration for large data sets. In Proc. International Conference on 3D Digital Imaging and Modeling (3DIM). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Roth, H., and Vona, M. 2012. Moving volume KinectFusion. In British Machine Vision Conference (BMVC).Google ScholarGoogle Scholar
  25. Ruhnke, M., Kümmerle, R., Grisetti, G., and Burgard, W. 2012. Highly accurate 3D surface models by sparse surface adjustment. In IEEE International Conference on Robotics and Automation (ICRA).Google ScholarGoogle Scholar
  26. Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. 2002. Real-time 3D model acquisition. ACM Transactions on Graphics 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rusu, R. B., and Cousins, S. 2011. 3D is here: Point Cloud Library (PCL). In IEEE International Conference on Robotics and Automation (ICRA).Google ScholarGoogle Scholar
  28. Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. 2006. A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. 2012. A benchmark for the evaluation of RGB-D SLAM systems. In International Conference on Intelligent Robot Systems (IROS).Google ScholarGoogle Scholar
  30. Triggs, B., Mclauchlan, P., Hartley, R., and Fitzgibbon, A. 2000. Bundle adjustment -- a modern synthesis. In Vision Algorithms: Theory and Practice. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Troccoli, A., and Allen, P. K. 2008. Building illumination coherent 3D models of large-scale outdoor scenes. International Journal of Computer Vision 78, 2--3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Turk, G., and Levoy, M. 1994. Zippered polygon meshes from range images. In Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Weise, T., Wismer, T., Leibe, B., and Gool, L. V. 2011. Online loop closure for real-time interactive 3D scanning. Computer Vision and Image Understanding 115, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Weyrich, T., Lawrence, J., Lensch, H. P. A., Rusinkiewicz, S., and Zickler, T. 2009. Principles of appearance acquisition and representation. Foundations and Trends in Computer Graphics and Vision 4, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Whelan, T., Johannsson, H., Kaess, M., Leonard, J., and McDonald, J. 2013. Robust real-time visual odometry for dense RGB-D mapping. In IEEE International Conference on Robotics and Automation (ICRA).Google ScholarGoogle ScholarCross RefCross Ref
  36. Williams, B. P., Cummins, M., Neira, J., Newman, P. M., Reid, I. D., and Tardós, J. D. 2009. A comparison of loop closing techniques in monocular SLAM. Robotics and Autonomous Systems 57, 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wu, C., Agarwal, S., Curless, B., and Seitz, S. M. 2011. Multicore bundle adjustment. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zeng, M., Zhao, F., Zheng, J., and Liu, X. 2013. Octree-based fusion for realtime 3D reconstruction. Graphical Models 75, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Dense scene reconstruction with points of interest

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader