skip to main content
research-article

Adaptive fracture simulation of multi-layered thin plates

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

The fractures of thin plates often exhibit complex physical behaviors in the real world. In particular, fractures caused by tearing are different from fractures caused by in-plane motions. In this paper, we study how to make thin-plate fracture animations more realistic from three perspectives. We propose a stress relaxation method, which is applied to avoid shattering artifacts after generating each fracture cut. We formulate a fracture-aware remeshing scheme based on constrained Delaunay triangulation, to adaptively provide more fracture details. Finally, we use our multi-layered model to simulate complex fracture behaviors across thin layers. Our experiment shows that the system can efficiently and realistically simulate the fractures of multi-layered thin plates.

Skip Supplemental Material Section

Supplemental Material

tp143.mp4

References

  1. Alava, M., and Niskanen, K. 2006. The physics of paper. Reports on Progress in Physics 69, 3, 669.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics 13, 2 (Mar.), 370--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun, E. 2006. A quadratic bending model for inextensible surfaces. In Proc. of SGP, 227--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boux de Casson, F., and Laugier, C. 2000. Simulating 2d tearing phenomena for interactive medical surgery simulators. In Proc. of the Computer Animation, 9--. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of SCA, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. CGAL, 2013. Computational Geometry Algorithms Library. http://www.cgal.org.Google ScholarGoogle Scholar
  8. Cheng, S.-W., Dey, T. K., and Shewchuk, J. R. 2012. Delaunay Mesh Generation. CRC Press, Boca Raton, Florida. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 604--611. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Etzmuß, O., Keckeisen, M., and Straßer, W. 2003. A fast finite element solution for cloth modelling. In Proc. of Pacific Graphics, 244--. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic shells. In Proc. of SCA, 91--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A discrete model for inelastic deformation of thin shells. Tech. rep., Aug.Google ScholarGoogle Scholar
  13. Grinspun, E., Krysl, P., and Schröder, P. 2002. Charms: a simple framework for adaptive simulation. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. of SCA, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Guo, X., Li, X., Bao, Y., Gu, X., and Qin, H. 2006. Meshless thin-shell simulation based on global conformal parameterization. IEEE Transactions on Visualization and Computer Graphics 12, 3 (May), 375--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Iben, H. N., and O'Brien, J. F. 2006. Generating surface crack patterns. In Proc. of SCA, 177--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. (SIGGRAPH) 28, 3 (July), 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. In Proc. of SGP, 1521--1529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Muller, M. 2008. Hierarchical position based dynamics. In VRIPHYS, 1--10.Google ScholarGoogle Scholar
  20. Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6 (Nov.), 152:1--152:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Narain, R., Pfaff, T., and O'Brien, J. F. 2013. Folding and crumpling adaptive sheets. ACM Trans. Graph. (SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 98, Annual Conference Series, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. O'Brien, J. F. 2003. Graphical Modeling and Animation of Brittle Fracture. PhD thesis, Georgia Institute of Technology, Atlanta, GA.Google ScholarGoogle Scholar
  25. Parker, E. G., and O'Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Proc. of SCA, 165--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. (SIGGRAPH) 24, 3 (July), 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Provot, X. 1996. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Proc. of Graphics Interface, 147--154.Google ScholarGoogle Scholar
  28. Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proc. of SCA, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In Proc. of SCA, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In Proc. of SCA, 155--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Volino, P., and Magnenat-Thalmann, N. 2006. Simple linear bending stiffness in particle systems. In Proc. of SCA, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 101--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28, 4 (Sept.), 105:1--105:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wang, H., O'Brien, J., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph. (SIGGRAPH Asia) 29, 6 (Dec.), 156:1--156:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: Modeling and measurement. ACM Trans. Graph. (SIGGRAPH) 30, 4 (July), 71:1--71:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wicke, M., Steinemann, D., and Gross, M. H. 2005. Efficient animation of point-sampled thin shells. Computer Graphics Forum (Eurographics) 24, 3, 667C--676.Google ScholarGoogle ScholarCross RefCross Ref
  36. Wicke, M., Botsch, M., and Gross, M. 2007. A finite element method on convex polyhedra. Computer Graphics Forum (Eurographics) 26, 3, 355C--364.Google ScholarGoogle ScholarCross RefCross Ref
  37. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29 (July), 49:1--49:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Adaptive fracture simulation of multi-layered thin plates

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader